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Preface

The advent of a computer which can intelligently
communicate with a human being in his native language will
so revolutionize human society that a 50 bit per second
machine cannot at this time begin to grasp the breadth and
depth of the change it will bring.

There are few, if any, research efforts that can offer
the exhilaration and challenge of exploring how the human
brain processes speech., O0f the means of communicating in
the animal kingdom, only speech is unique to humankind.
Perhaps that is an evidence of its power and complexity.

There are few people who have been as privileged as I
to study under the brilliance and enthusiasm of Dr. Matthew
Kabrisky. There are even fewer who have had the very unique
opportunity to take full advantage of the very important
and timely work of Dr. Robert W. Milne. For these
opportunities, I am truly grateful.

I am very thankful to my wife, Edie, who provided
support in every way possible. Without her contributions,

this work would not have been realized.

Richard LeRoy Routh
WPAFB, OH

August 1983
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y Abstract

134 R
S X
oo Subject to the accuracy of the acoustic analyzer and
i \..:'
{:: the accuracy and completeness of the English Parser, a
E s
A real-time general solution to the application of English
~e syntactic constraints to spoken English recognition has
e
o been developed. This solution is functionally equivalent,
Qﬁ in many ways, to the syﬁtax processing of spoken English in
- the human brain. Because it closely models the syntax
b
\%r processing of the Human Speech Recognition System (HSRS),
‘Qﬁ it is most effective when used with the several levels of
AN semantic analysis which are also evidently operational in
-: ‘.'
P2

Qﬁ the HSRS as has been shown in this thesis. Hence, this work
N -~
0 GE, may well be a necessary part of the the eventual general
‘:¥ solution to the English speech recognition problem,
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ésg . I. Introduction
33: As computers become more capable of performing complex
i%s and intelligent tasks, they become both more useful and
{§ easier to use. Computers are becoming more useful because
N their capabilities to solve complex problems is increasing.
>ﬁ§ They are becoming easier to use because their increased
;ﬁ: speed, size, and complexity allow them to be programmed to
Z; use the communication methods which humans prefer. The more
;; this happens, the less special training is needed on the
}a part of the user. One of the goals of this evolution is to
?q provide the layman with the capabilities which the computer
;S can afford him without any special training whatsoever. The
3\ GE, ability to type, the learning of computer protocols, and
’3 the speaking with distinct and separated speech all fall
fg into the category of special training. There is, therefore,
2 a need to build an interface to computers which is capable
;E of understanding normal speech. This problem is referred to
gi as the man-computer communicatibns gap.

. This communications gap between humans and computers
r is evident in that only a small fraction of the human
‘ population is sufficiently educated to be able to use
l, computer systems. A significant portion of bridging this
ff gap involves the learning of special codes, languages,

§ typing skills, et cetera, in order to train the human wuser
;f to communicate with the computer.
E} ’T' The task of providing these problem solving
E&

4

e e e e T e
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:; capabilities to a great many more people would be much more
j;; easily realized if the computer «could be taught to
e~ understand common English rather than people being taught
A
Sﬁ to communicate in computer languages. It is to this end
h; that this research is directed.

g' A great deal of researc . has already been directed at

*I
\l
:ﬁ shrinking the man-computer communications gap. Other than
\"'

-5 for some extremely restricted applications, this research
TQ has produced small vocabulary, speaker dependant, isolated
i; word speech recognizers. What is required is a real time,
- large (virtually unlimited) vocabulary, speaker
e, independant, connected word speech recognizer.

o

fi A normal spoken English interface to a computer
L~ a promises to provide the enormous capabilities of the
“ electronic computer to the non-technically trained person.
53 This would facilitate great technical advances in all
b

P fields of human interest and endeavor. A speech interface
}ﬁ with a computer is a difficult problem to solve. Its scope

X
3? and complexity are beyond an individual masters degree
-(::

level research effort. However, since complex problems are

R often solved by dividing them into 1less complex subtasks

L
- and then solving these simpler subtasks one at a time, this
-

;: researcher proposes to approach the solution to this
29 difficult problem by solving one of its subtasks.
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A. Background and Problem

5 o~

! o In order to provide a solution to the common speech }
computer interface problem as previously described one
Ve ’ 3

% should consider the following model:

SEMANTIC PROCESSOR

. S S St T7PECT
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Figure 1.1. Hierarchies of Speech Recognition

This model was proposed by Levinson (Ref 15:76). It is

) believed to be an accurate psychological model of hov
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speech is processed in the human brain and will be
discussed in more detail in later chapters. It can be seen
that in this approach the first step is to process the
output of the voice decoder (which is the acoustic
processor in Figure 1.1) through a syntactic parser. This
is necessary because contemporary voice decoders are not
accurate enough, nor is there sufficient information in
word sounds alone, to correctly reconstruct the input
speech. Both syntactic and semantic feedback should be
provided to the voice decoder in order for it to choose
properly from among its available decoded options.

For example: In the sentence: "The ewe had a lamb,"

the word "ewe" sounds identical to the word "you" and the

pronunciation of the letter "u." It is not possible for the

voice decoder to consistently make the right decision based

only on the sound of the word. It is often found
(especially in connected speech) that both syntactic
information (grammatical correctness -- which is sufficient

in this example) and semantic information (meaning) are
needed in addition to the accurate mapping of the sound of
the uttered input to the sounds of the words in the
computer's vocabulary.

The purpose of this research and thesis is to build
such an interface between the voice decoder being developed
here at the Air Force Institute of Technology under the
guidance of Dr. Matthew Kabrisky and Major Larry Kizer, and

the Syntactic/Semantic English parser which was developed

'-IAAA_ :
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?;_ by Dr. Robert Milne at the University of Edinburgh,
;E R Scotland.
;i B. Scope of Solution
S; It is important to realize that a complete solution to
‘ﬁl the Spoken English Recognition Expert System (SPEREXSYS)
problem is a ongoing process. The quality of the solution
;? is dependant on the quality of the voice decoder and the
;: quality of syntactic and semantic analyzers. The quality of
i} the voice decoder 1is dependant on its accuracy, its
. vocabulary, how well it handles connected speech, how well ]
'%i it understands various dialects, its look back ability, and 9
% o so forth. The quality of the syntactic and semantic .
:5 \* analyzers depend on their vocabularies, the <completeness ?
ﬁi and correctness of their grammars and semantic rules, the 1
- accuracy of the algorithms they use to decide among l
otherwise equally viable options, and so forth, It is
therefore apparent at the outset that the scope of the
SPEREXSYS solution is greatly constrained by the quality of
the two modules it interfaces.
The interface between the voice decoder and the
English parser is useful in that it promises to improve the
Eﬁ accuracy of the voice decoder by assisting it in choosing
ég among othervise nearly indistinguishable decoding
5: alternatives. It does this by selecting the highest

'}? probability voice decoder outputs and allowing the English

e e te e e, R R, et s T e DR ¥
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parser to comment on their grammatical <correctness. The
A precise algorithms for doing this will be described in
chapter three. The SPEREXSYS then selectively applies these
T comments to the voice decoder output and feeds the results
back to both the voice decoder and the English parser until
an acceptable solution has been found. An acceptable
:j solution is defined to be one which is grammatically
correct and which is above the error threshold of the voice
decoder. It follows then that a major purpose of this
~; project 1is to determine how much of an impact the English
parser has on the reliability of the voice decoder output.
In addition, the SPEREXSYS 4is to be written and
S documented in such a way that it }ends itself easily to
modification in order to incorporate improvements in not
only its own software but also future improvements in the

voice decoder and the English parser.

C. Assumptions

This thesis effort is predicated on three assumptions.
The first is that the voice decoder is fairly accurate.
f This means that the word which was actually uttered into
the voice decoder's input will appear in the top few
choices of the voice decoder's output.
o The second assumption is that the English parser
accurately analyzes the grammar of the candidate sentence

strings which are input to it. This includes the

N T W T o sy r o' x RS A A2 5 S SAR At Tl Sie Toas St "Rin e
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requirement to assess the degrees of grammatical

correctness (see the discussion from Bach in the next
chapter) of the candidate sentence strings.

The third wunderlying assumption is that a two hundred
word vocabulary is 1large enough to demonstrate the
feasibility of this approach. Fifty word vocabularies
appear to be an upper limit of commercially available voice
decoders. If the approach in this thesis can be shown to
work for at least two hundred word vocabularies, then it
will be successful in demonstrating both the philosophy and
methodology of this thesis approach because it will have
improved the state-of-the-art performance by applying
syntactic constraints to the output of the voice decoder.
Two hundred words is thought to be 1large enough to
demonstrate the success of this approach while, at the same
time, being small enough to work with in the limited time

constraints of an AFIT masters degree thesis.

D. General Approach and Summary of Current Knowledge

The general approach to solving this problem is as
follows:

The interface accepts all outputs from the voice
decoder. The voice decoder outputs will be all the words
from its vocabulary which have matching scores above some
previously defined error threshold. This will be explained

in greater detail in chapter two. These outputs comprise




.........

e
gf? ) the voice decoder's best guesses of what was uttered. The
;;i e SPEREXSYS then strings these best guesses together based on
j\{. the time sequences of reception into the voice decoder. The
;&E mast probable strings are then sent to the English parser
5&: for analysis. The parser determines whether or not the
o strings it has been sent are grammatically correct.‘If they
*és are grammatically correct, then it signals the ;emantic
Ffi levels of the SPEREXSYS that an acceptable solution has
\}§ been found. If it is not grammatically <correct, then the
‘:':,3 SPEREXSYS eliminates that string from further
:zﬁ consideration. Since the SPEREXSYS builds grammatically
:f% correct strings deterministically (one word at a time),
ﬁé several grammatically correct high probability sentences
Sa . are constructed from a single uttered sentence. The
ié; bl syntactic levels of the SPEREXSYS appeal to the semantic
vﬁﬁ levels for arbitration of these ambiguities.
E“ To this researcher's knowledge, no such interface has
.:; ever been attempted. This may be due in part to the fact
};E that Dr. Milne's English parser has only recently been
N
oA completed and is the only accurate (psychologically correct
i$ | model of the human speech recognition process) English
53 parser which allows the deterministic parsing of a
:E: sentence. It will be shown later in this thesis that this
- characteristic is essential to the successful building of
if an interface between a voice decoder and an English parser.
Eil Many decisions on error thresholds have had to be made for
23 j;} the first time. Many algorithms on option selections (and
o) !
o |
:..:f:_ 8 ‘
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the associated selection criteria) have been developed as
original work. Many decisions in these areas have been made
for the first time because up until this thesis, this was

an unsolved problem.

E. Standards

..1
L)
\:_\
':“:1
N If, within a few seconds or less (near real time), the
- SPEREXSYS can successfully pick the correct string (based
',;“':
TR on ambiguities which only need syntactic constraints for
Lo
Eﬁ correct decisions) from among the millions of ©possible
é strings which <can be constructed from its top few choices
:f at each word of sentence lengths of about ten words (if
',’ 5) only the top five choices for each word of a tem word
o sentence are used to construct candidate strings, there are
:i 9,765,625 possible strings that can be constructed), and if
" it can do so repeatedly for different wuttered sentences,
ﬂ{ then the concept and methodology used to build the
[\
S SPEREXSYS will be considered validated.
- F. Materials and Equipment
. The materials and equipment which were needed to
o complete this thesis were all available at the outset of
{3 the thesis. They are listed as follows:
o
‘Y 1. VAX 11/780 computer and the Franz LISP compiler
- and interpreter,
S
\{:
::




;f 2. The English parser and the Avionics Laboratory
”;; 2 DEC-10 computer on which it runms,

;\ 3. The voice decoder and the Pattern PRecognition
‘f:: Laboratory computer on which it runs, and

;Ei 4. Four modems and their associated computer ports
o~ which will be used to connect the VAX computer
é; with the DEC-10 computer and the VAX computer
$E with the Pattern Recognition Laboratory
:l computer.

Eﬁ G. Other Support

s

ES Computer center operations personnel for all three
N

P

computers were required to identify modem ports and to hook

up the modems which will connect the computers together.

24

N

¥

~" H. Sequence of Presentation

:

;F This first chapter provides the reader with a broad
Y perspective of where this research fits in the world of
. computer interface developments. It serves to acquaint the

o«

'ij reader with the background relevant to this research and to

Cal

f3 provide a brief description of the purpose, scope and

N complexity of the research which was done for this thesis.

N

L~ The second chapter has been written to provide the

;; reader with a more detailed understanding of the problem.

$, s Included in this chapter is a discussion of the theory of
s -

122

N
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speech recognition and how the voice decoder implements

that theory, as well as a discussion of the inadequacies’ of
8 stand-alone speech recognizer,

Also included in the second chapter is a discussion of
transformational grammar and the implementation of this
grammar theory into the English parser wused in this
research. The chapter concludes with a discussion of the
concepts which relate to the solution of this problemn.

Chapter three describes the structure and design of
the Spoken English Recognition Expert System (SPEREXSYS).
The design is presented in three phases. Phase one
describes the top level design which discusses the system
interfaces and the reasons for choosing them in the manner
used.

The second phase explains the intermediate levels of
design through the use of structure charts. Design problems
are discussed and the rationales used in making the design
decisions are described.

Lastly, this chapter briefly discusses the low levels
of the design.

Chapter four deals with the specific implementation of
the design as it relates to the machine peculiar
interfaces. Other miscellaneous implementation details are
discussed. The rest of the chapter is devoted to explaining
the validation and testing philosophy and procedures. Each
test is defined in terms of how it was used to help

validate the design. The results of each test are discussed

11
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as well as an explanation of the conclusions which are
Adrawn from the analysis of the test results.

The fifth and final chapter presents a summary of this
thesis, an explanation of how the SPEREXSYS can and should
be used, and a discussion of the recommended improvements
and enhancements to the system. The chapter concludes with
a presentation of the possible future extensions of this
work.

Appendix A 1is a listing of the Franz LISP code of the
SPEREXSYS. This 1listing includes many comments on the
function of the code, line-by-line, and module-by-module.

Appendix B contains the results of selected sample
runs from the testing.

Appendix C is a short users manual which should be of
great help to future SPEREXSYS users and developers.

Appendix D is a discussion of how what is already
known about the Human Speech Recognition System (HSRS) can
and should be more reflective of speech recognition systems
as they have been developed to date.

Appendix E discusses the function of a short term
memory and how it relates to speech recognition. A brief
example is included.

Appendix F presents the formulation and experimental
verification of the hypothesis that the HSRS favors longer
words over shorter words.

Appendix G is a brief data dictionary which includes

primarily global data descriptions. A few key local data

12
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II. Existing Framework

The nature of the SPEREXSYS program is to function as
a smart interface between the Voice Decoder and the English
Parser. It 1is thgrefore necessary to understand the theory
and the function of both the Decoder and the Parser in
order to gain an appreciation for the parameters which
constrained the potential performance of the SPEREXSYS from
the outset of its development. This background will also
assist the reader in understanding why <certain SPEREXSYS
design decisions were made.

This chapter discusses the theory and function of both
the Voice Decoder and the English Parser. After this
background foundation has been 1laid, the chapter will

conclude with an explanation of the concept of the solution

to the SPEREXSYS design problem.

A. The Voice Decoder

The Air Force Institute of Technology has been
developing a speech recognition machine for the past few

years under the guidance of Dr. Matthew Kabrisky and Major

Larry Kizer. Its incremental development and improvement
has been the result of the efforts of a series of students,
each working on a graduate level research project. A
conceptual summary of their combined research and results

is presented here in order to acquaint the reader with a

14
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general wunderstanding of the theory and function of the
Voice Decoder used in the development of the SPEREXSYS. 1In
addition, some general theory of the acoustic analysis of
speech is discussed along with mentions of other approaches
to solving the same problems.

Referencing the Levinson model (Figure 1.1), the Voice
Decoder performs the function of the acousti¢ processor.
Specifically, it examines the spoken input utterance and
makes guesses as to what words might have been spoken.
Doing only this much has consumed the efforts of some of
science®s brightest people for over two decades without

completely satisfactory results to date. By "completely

satisfactory" it is meant that the acoustic processor
(voice decoder) approaches the accuracy of the acoustic

analyzer in the human speech recognition system (HSRS). As

st L ans,

this discussion develops, the reader should remember two

, .

things:

1. Acoustic processors have been developed to

ICHPICTOn 1 ¥

the point that they are moderately accurate
at guessing words from a controlled input
string when the vocabulary of possible
choices is restricted to 1less than 100
words.

2. A completely satisfactory acoustic processor
is only a small (nevertheless <critical)

functional subset of the speech recognition

15
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;E process (see Figure 1.1). The upper levels
3} Qﬂ of the process -- the syntactic, semantic,
N and response generation 1levels - are
Tég dependent on a reliable "front end." That

5 is to say: a chain is only as strong as its
\3 veakest link and a speech recognition
5%% system is no exception,.

s
—  The spoken input is in the amplitude versus time
3:5 domain. This is the form of the output of a microphone. It
::: is also the form of the output of the ear drum to the inner
73: ear mechanism. Since, as has already been mentioned, sounds
{:? vary so considerably when spoken by a human speaker (even
R iE’ when he attempts to reproduce the same sound), simple
N direct template matching of stored sounds to the output
‘éi mapping of a sound in the amplitude versus time domain is
N woefully inadequate. There are amplitude and frequency
lg; variations as well as time warping between any two sounds
’é produced by a human so as to make straight template
;§ matching extremely wunreliable. There are word recognition
5& schemes which attempt to normalize amplitudes, allow for
'fg small variations in frequency, and employ complex time
23 warping. This approach has consistently proven to yield

4 unreliable results and to be extremely computation bound
\: for a general solution. This tends to suggest that a
J? different feature set must be examined.

ﬂb» An examination of the process in the HSRS reveals that
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the signals are converted from the amplitude versus time
domain (output by the ear drum) to the amplitude versus
frequency domain (the signal in the auditory nerve) where
the frequency axis is logarithmic. Many approaches
incorporate this knowledge by attemoting to <classify the
spoken inputs on the basis of some form of a Fourier
transform feature set. The AFIT Voice Decoder employs this
method of analysis in order to classify eight millisecond
time slices of uttered speech as specific phonemes.

Some speech recognition approaches such as Linear
Predictive Coding (LPC) do not use a Fourier based feature
set, but instead, attempt to «classify the wuttered input
based on feature sets which are probably significantly
different than those used by the HSRS.

Some acoustic analyzers do use Fourier based feature
sets, but process entire words instead of first breaking
these words into phonemes. Of course, before this can be
done, the beginning and end of words must be known. This is
not so hard if the words are spoken so that there are
significant time gaps between words and if the ambient
noise is low. This (time gaps between words) is called
discrete speech or isolated word recognition. While this is
not the way English is naturally spoken, it is, however, a
constraint which greatly simplifies speech recognition.

The AFIT Voice Decoder currently uses isolated word
recognition. It is extendable to connected (natural) word

speech but this has not yet been done. The reason it can be
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extended to connected speech is that its analysis of word
choices 1is based on a serial string of phonemes which
represent the uttered input. This greatly constrains the
possible word boundaries to such a small set that
exhaustive searches of word boundaries becomes feasible.

The speech recognition methods which do not first
identify phonemes before attempting to identify words must
rely on some type of time warping algorithm. This is
necessary because a word can be compressed and expanded at
multiple points (in time) in its utterance when compared to
a previous utterance of the same word. For example, one
utterance of the word "three" may take 250 milliseconds to
produce. Even if all future utterances of the word "three"
are time normalized to 250 milliseconds, the duration of
the "th" sound may be 40 milliseconds for one of the
utterances and 50 milliseconds for the other. Similar
differences for the other phonemes in "three" are also
likely. So until these time warpings of the different
phonetic sounds in a word are time warped back to match the
standard representation of the word (the store prototype
against which all future utterances will be compared), no
significantly reliable mapping of an input wutterance to a
stored prototype can occur.

In the AFIT voice decoder, once a string of phonemes
has been output from the first stage of the Voice Decoder
(Ref 20), the second stage analyzes this string to

determine the best match of this string of phonemes with

18
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the phoneme strings which are characteristic of the words
in its vocabulary (Ref 18). This is a very difficult and
complicated problem beause the output strings are quite
variable.

The difficulty lies in the fact that, because the
input speech ‘is quite variable, the first stage (phoneme
identification) characteristically makes many wrong
guesses. The second stage, therefore, must attempt to find
a best word match wusing inaccurate input. To do this,
straight template matching has proven not to work well.

To illustrate the problem, refer to figure C.6
(Seelandt:260). Figure C.6 is reproduced here as figure
2.1. It shows the output of the first stage of the Voice
Decoder for 48 time slices. This output for the utterance
"zero" is in the form of a table of the best five guesses
(with weighted degree of certainties normalized to 100) for
the input wutterance for each time slice. The following

questions/problems are immediately apparent:

1) When does the word start and stop?

2) When should one discard data due to
excessive background noise or transition
between phonemes?

3) What algorithm, if any, should be used to
decide which of the five most probable
guesses to use for each 8 millisecond time

slice.
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- 200 XX-1050 XX- ‘i OH- 49 O0Qu- 2
ii 201 X»-100 XX- 7O OH- 48 O0QU- 2
o 202 X¥-100 XX- 71 OH- 49 QU- 5B
3 Xy=100 KX~ &7 .- i1 Lu- =7

B 24 XX=-1CD XX- &6 Ix- 46 RE- 44
e 205 XX-100 1IE- A3 XX- 63 RE- 62
) 206 IE-100 XX- <8 IlE- 90 KX- 89
207 1E-100 RE- @7 1E- 97 AE- 94
208 IE-107 EE- ©“46 RE- 91 EE- 88
209 IE-10Y EE- “4 FX- 90 IE- 90
210 IE-100 FX- <7 RE- 96 EE- 956
211 RE-1C) QU- ¢4 IE- 94 FX-~- 93
212 ZX-100 0QOU- ¢34 RE- 94 AY- 90
213 RE-100 ZX- €45 QuU- 95 AY- 92
214 ZX—-10n" AY- §8 1Y- 97 NX- 95
215 IY-16: AY- &% IX- 98 Qu- 92
216 ZX-10. IY- §3 AY- 95 ER- 8°
217 ZX-100 AY- S§4 NX- 92 1Y- 91
218 ZX-100 RE- 87 NX- 96 ER- 95
219 RE-100 ER- §4 0OU- 96 2ZIX- 94
220 0U-100 RE- 91 ER- 89 NX-~ 89
221 OU-100 UA- 95 RX- 88 ER- 87
222 OU-100 UA- 97 VX- 95 ER- 87
223 UA-10D VX- 92 0QuU- 89 RA- B2
224 Ua-10) RA- 93 QU- 93 vX- 91
225 OU-100 UA- 95 RA- 94 O0OH- 93
“u 226 0OU-100 UVA- 93 TX- 89 OH- 88
227 OU-100 UA- 93 OR- 95 OH- %0
228 UA-100 0OU- 93 O0OU- 86 NX- B4
ot 229 UA-100 0OU- 95 O0OU- 88 VX- 87
G‘ 230 OU-1C0 WU- 99 UA- 95 Qu- 92
231 OH~-100 QOU- 99 RA- 96 WU- 95

., @32 0U-100 0OU- 97 VA~ 96 RA- 95
233 0U-10C 0OU- B2 WU- 81 NX- 79

- 234 OU-i100C 0OU- B6 NX- BO Wu- 78
23%5 0U-~-100 WU- 84 QU- BO NX- B0

; A6 DU-100 WU- 91 OH- 82 NX- 79
237 OU-10C WU- 88 O0OH- 86 NX- B1
238 0OU-10: WU- 90 OH~ 90 NX- 82
239 OU-10C OH- 97 WU- 94 OH- B1
240 OH-10tC WU- 90 0OU- B89 OH- B2
241 OH=-10/* WU- 91 OH- 87 RA- B6
242 OH~10+ PA- 92 OH- 91 WU- 89
243 OH-10! 0OH- 9 WU~ 94 OR- 90
244 OQH-10+ RA- 89 OR- 89 WA~ 89
245 0OF -1C0 OH- 99 RA~ 95 WA- 94
246 R -1G0 AH- 97 0OH- 96 WA- 95 RA- 92
247 Ar--1CN WA- 94 (Ok- 898 RA- P+ RY- R4

Figure 2,1, Example output (OUT2) of measure-
¢ 2 ment routines (TRYDLISTS and LISTER2)
using second (Hamming window) pro- :
. totype set on the utterance “2ero", .
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To solve these problems in the second stage of the
Voice Decoder, Fuzzy Set Theory was used. Fuzzy Set Theory
allows for partial membership in a set. Each input phoneme
has some degree of membership in all phoneme sets
(templates) stored in the program's dictionary. Its degree
of membership is determined by the 1likeness of its (the
input phoneme) elements to the elements in the
stored-dictionary phoneme's set.

The Fuzzy Set Word Guessing algorithm identifies
characteristics for <comparison as elements within the sets
and computes coefficients of likeness between the input set
elements and the stored word set elements. These
coefficients are each weighted according to the program's
algorithm to determine the input string's degree of
membership in the sets which represent the stored words.
The stored word set in which the input string has the
highest membership is the first and best guess as to the
identity of the word which was input into the Voice
Decoder. The second guess word is the word set in which the
input string has the next greatest membership and so on.

The coefficients of the elements of each set are tuned
dynamically and heuristically by both the programmer at
initialization and the program during execution. This
allows for the continued improvement of accuracy of the
program.

It has been mentioned that isolated word speech is

20
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easier to recognize than connected word speech. That is

because in isolated word speech the word boundaries are
clearly defined. In natural (connected) speech they are not
clearly defined. It is common in connected speech to have
the initial and trailing phoneme of a word be somewhat
mutilated due to the fact that the trailing phoneme of a
word is required to slide evenly (acoustically transition)
into the initial phoneme of the next word. In essence, the
two compromise slightly in order to transition smoothly.
This results in phoneme mutilation and, therefore, makes
the task of phoneme identification more difficult. In
addition to this complicating phenomenon, when a word's
trailing phoneme and the next word's initial phoneme are
the same, they are commonly shared. For example, in the
normal utterance of the two words "white towel," the

phoneme "t"

occurs only once. It is shared by both the word
"white" and the word "towel." Sometimes even more than one
phoneme is shared when transitioning from one word to the
next. This more commonly happens when the 'speaker is
speaking rapidly. The two words "mast string" when spoken
quickly may share both the "s" and the "t" sounds. In this
instance, these two words are also acoustically
indistinguishable from the single word "mastering." In
order to find the word boundaries in connected speech,
since acoustic analysis is insufficient in determining them

(even with a perfect acoustic analyzer, there is

insufficient information in the acoustics alone to do

21
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this), syntactic and semantic information must be used.

That is one of the reasons that this thesis has been
performed. It allows only grammatically correct (syntax)
word strings to be formed. This syntactical conctraining of
word guessing in the acoustic processor helps to find word
boundaries (and improve the reliability of word guesses)
but: even perfect syntactical analysis is insufficient to
resolve many ambiguities. The following example helps to
illustrate that several 1levels of semantics are also
required in order to accurately recognize conversational
speech:
Mary works in the cosmetic section of a
large departmént store. She has just
completed the monthly inventory and is now
engaged in ordering the items which are in
short supply. Her boss inquires as to
whether she is going to be ordering both
hand 1lotions and facial makeup kits. She
replies, "I am ordering more hand lotions
because we're pretty low on them this
month, We still have a pretty good supply

of makeups though, so I won't be doing any

makeup ordering."
If we input only the last two words of Mary's reply to
a Voice Decoder which 1is capable of perfect accuracy in
interpreting input phonemes (which, of course, AFIT's is

not at the present time), the following interpretations

22




~‘. ................ A
E;% would be completely legitimate:
‘$b§ e 1) makeup ordering

i&i 2) make up ordering

EE; 3) make cup ordering

E;j 4) may cup ordering

N 5) makeup or during

:é; 6) makeup order ring

21? 7) makeup poor during
—T; 8) makeup portering

i?z 9) makewp porter ring
}E? 10) make up or during
é;: 11) make up order ring
Eg 12) make up poor during
::' @ 13) make up portering
‘}:. 14) make up porter ring
jge 15) make cup or during
E? 16) make cup order ring
:i{ 17) make cup poor during
;ﬁg 18) make cup portering
\%f 19) make cup porter ring
o 20) may cup or during
_iﬁ 21) may cup order ring
};3 22) may cup poor during
. | 23) may cup portering
iﬁ: 24) may cup porter ring

PO

25) make a poor during

Sog (R

. Do 26) make a porter ring
- .
Yy 23
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\; 27) make a portering

v Of these 27 distinct phoneme based interpretations of
the two words which were input dinto the hypothetically
flawless Voice Decoder, only the first, second, third,

fourth, eight, thirteenth, eighteenth, and thenty-third can

fit syntactically with the rest of the sentence. Only the
first four of those fit semantically '‘within the context of
the sentence; and only the first one (makeup ordering) fits
semantically within the context of the entire conversation. g

This example illustrates some of the problems

encountered when attempting to interpret the wutterances of
connected speech with even a perfectly accurate Voice
Decoder. It also illustrates the wultimate need to filter

(jﬁ the Voice Decoder's output through first a syntactic

’

analyzer, then a sentence-contextual semantic analyzer, and
finally through a global-conversation-contextual semantic
analyzer.

The last performance criteria of an acoustic processor

which will be discussed in this chapter is the vocabulary
size. As the accuracy of an acoustic processor increases,
the distinguishability between the words in its vocabulary

increases. As this distinguishability between words

(resolution) increases, the vocabulary size which can be

:
!
1
]
q

reliably (for some given degree of reliability)

Ty

differentiated increases. The size cf the vocabulary which

a voice decoder can handle is therefore 1limited by its

accuracy for some given degree of reliability. Since the

it
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addition of syntactic and semantic constraints on the word
guessing of the input improves the reliability of a speech

recognizer, it also allows for an increased vocabulary

NN
Sads

-
)

size. It should be realized, however, that if the

»
a

vocabulary search is not done in parallel, the processing
time will be increased for larger vocabularies.

The astute observer will realize that the accuracy of
the state-of-the-art speech recognizers is fairly poor as
evidenced by the fact that they all restrict the upper
bound of the vocabulary size to less than one hundred

words. It is this researcher's contention that the solution

to this accuracy problem is to more <closely mimic the

functions of the HSRS. Some suggestions for this are

contained in chapter five and appendix D of this thesis.
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25

i
‘e 04 2 ol s s



O]
LI S Wy %y

LA
At

B. The English Parser - Its Theory and Applicatior

a, &
a

L

i The English Parser is the tool which the SPEREXSYS

\ 2 s 2 L - v rr A oW Tgw ~ v, w v gL - B I 7 R - - ~ -
.
:
* .
A

Y

*N

%s used to insure that only interpretations which are ‘
REJ grammatically correct were accepted. The English Parser is ‘
R the result of the Ph,D. research done by Robert W. Milne.

S? It continues to undergo modification and improvement as new

;; rules énd requirements are identified (especially during

i; the development of the SPEREXSYS). Because the English

ff Parser was structured in a strictly top-down modular

C% fashion, it lends itself easily to expansion and h
‘53 modification. Before examining the specific theory and

53 design of the English Parser and its functional application !
? as a grammatical filter in this project, it is useful to ?

» discuss the nature of a grammar. This discussion will lead
. to an understanding of both why a transformational grammar
. was used and why the particular architecture of Milne's
o Parser is ideally suited for use in a project such as this

one,

L
il el B il o0t ced B

Koutsoudas has said that "a grammar is a device that
tells the reader [user] how to construct an infinite number
: of correct sentences of a language and no incorrect ones
- (Ref 13:1)." In order to develop a good computer program

which could be used as a syntactic filter, it was necessary

.

:j to study English grammar and then to build a program which
-3

-~ was an accurate model of the rules of that grammar.

- -2& The task of choosing a good English grammar to use as
oL 26
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a syntactic filter for common speech is complicated by the
observed phenomenon in English that there exist varying
degrees of grammatical correctness. Koutsoudas points out
that there are "maximally grammatical" and "questionably
grammatical"™ sentences in English. A good grammar should
generate the maximally grammatical sentences first in order
to be able :to identify the deviations of the questionably
grammatical sentences (Ref 13:2). One must be careful,
therefore, to choose not only a grammar which generates
only correct English sentences, but one which
preferentially generates the most correct ones.

There are two approaches to formulalting a grammar.
These are the Familiar Linguistic Theory approach and the
more recent Transformational Analysis approach, In
comparing these two approaches, Chomsky writes:

Our main <conclusion will be that familiar
linguistic theory has only a limited
adequacy - i.e., that it is attempting to
do too much with too 1little theoretical
equipment. ...It will be shown that the
theory of transformational analysis can be
formulated in the same completely
distributed terms that are required anyway
for 1lower 1levels and that a large and
important class of problems that arise in
the rigorous application of familiar

linguistic theory disappears when it is

27
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extended to include transformational
analysis (Ref 5:64).

Familiar Linguistic Theory approaches the task of
formulating a grammar by listing a separate rule for each
specific case of sentence formulation. This approach
produces grammars which are extremely lengthy because each
of its rules specifies an extremely restricted class of
sentences. One might well argue that Familiar Linguistic
Theory is only a very large collection of trivial cases. On
the other hand, Transformational Analysis attempts to
describe a grammar in terms of General Linguistic Theory.
Bach elaborates on the nature of General Linguistic Theory:

General Linguistic Theory ... must present
a set of terms and distinctions sufficient
to account for the rich variety of
grammatical systems given in the world's
several thousand 1languages, but limited
enough to explain the universal features of
these natural 1languages. Each theory of a
specific language can then be taken as a
particular exemplification of the types of

systems predicted by General Linguistic

Theory. To the extent that the notions of
Transformational Theory are adequate to
this task, it offers a preliminary picture

of what languages in general are 1like (Ref

2:2).
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The following brief summary and examples are offered
to acquaint the reader with the general concept of an
English Transformational grammar.

Transformational Grammar begins with the hypothesis
that every sentence is composed of two structural elements:

a noun phrase and a verb phrase. Graphically this concept

is presented as follows:

NP VP

From this hypothesis, a complete English grammar can
be generated using less than thirty rules. (This is a major
reduction from the hundreds of rules required by Familiar
Linguistic Theory to specify only a subset of English
grammar ).

For example, one rule of Transformational Grammar is
that the noun phrase can be implied. Hence, the sentence,
"Go!" has an implied noun phrase in the second person and
the verb "Go" is the complete verb phrase. In the sentence,
"The dog did bite Mary," the noun phrase and verb phrase
are both expanded according to other Transformational

Grammar rules:

ﬁET NP  AUX VP
THE JOG DID
VP NP
BJTE MJRY

29
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(f o There are two types of rules in Transformational
i; Grammar. They are P-rules and T-rules. P-rules are rules

'55 which allow phrase replacement for single elements. T-rules
8 are Transformational rules which allow for the
fﬁ transformation of sentential elements to reconstruct
jg different, but 1legal, sentences from a root sentence (Ref
o 13: chapter one).

;ﬁ: It is a P-rule which allows a noun phrase to be
Ea replaced by a determiner and a noun phrase. (Hence "the
-

;f dog" satisfies the structural requirement for a noun phrase
35 in the original hypothesis).

Eg The concept of wusing transformations such as the
2 iE} passive and question transformations make for a grammar
:i- that avoids the need for "rules of incredible complexity"
j;j which the more traditional (Familiar Linguistic Theory)
. approaches require (Ref 1:100-101). The following example
§i ' helps to illustrate this.

&g ‘In the following sentence: "Did the dog bite Mary?" it
= is a T-rule which allows the statement to be transformed
Eé into a question by simply changing the position of the
E; auxilliary from the third word to the first word in the
> sentence, Another rule specifies that all sentences have
&3 auxilliaries even though some are wunderstood and do not
é; appear in the original sentence. Hence the sentence, "The
5 dog bit Mary" «can also be transformed into the question:
:53 :i? "Did the dog bite Mary" (by wuse of the previously
g

................




demonstrated T-rule and another rule which changes the form

of the verb from "bit" to "bite") or into the question:
"Has the dog bit Mary?"
The general ©philosophy of Transformational Grammar is
embodied in a statement from Chomsky:
In general, we introduce an element or a
sentence form transformationally only when
by so doing we manage to eliminate special
restrictions from the grammar, and to
incorporate many special cases into a
single generalization (Ref 5:416).
Transformational grammar, therefore, is a general
theory of grammar which provides general rules for
describing legal sentence syntax. For example, it is this
transformational grammar which allows one to say: "The boy
runs,”" but does not allow: "The boys runs." It specifies

that in the second case, the "s" must be dropped off the

end of the verb "run" in order to produce a syntactically
(grammatically) legal sentence. It is also transformational
grammar which specify proper word order so that "The red
ball" is syntactically legal, but "The ball red" and "Ball

red the" are illegal syntactic constructions. These sorts

of rules form the basis for the application of the

syntactic constraints which help in the problem of
identifying illegal word combinations such as those likely
to be produced by the acoustic analyzer.

A good English parser must be a functional duplicate

31
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(produce identical outputs for a given set of inputs) of
the Human Sentence Parsing Mechanism (HSPM), that is to
say, it must fail where the HSPM fails and it must succeed
(display relative computational speeds for different types
of parsing problems) where the HSPM succeeds (Ref 17:
chapter one). This is accomplished in Milne's parser by the
techniques of "limited lookahead" and "wait and see."
"Limited lookahead" means looking ahead in the input stream
before deciding which grammar rule to execute and hence,
which will be the next state (Ref 17:16). "Wait and see"
means that, if the parser is unsure of a situation, it does
not make a random guess. Instead it waits until it has
enough information to make the decision correctly (Ref
G 17:16). By employing these two techniques in conjunction
with transformational grammar, a deterministic parser was
developed (Ref 17: chapter two and appendix B). This
differs from previous parsers based on transformational
grammars which were of the Augmented Transition Network
(ATN) type.

The ATN type of parser employs tree search techniques

for all syntactically correct solutions. This approach is

inherently slower because it extensively wuses the time

consuming process of backtracking. It is also a less X

accurate method of parsing English since it produces all

correct syntactic solutions instead of the maximally %
grammatical one(s). Finally, the ATN parser is an é

: unreliable model of the HSPM since it does not fail when -:‘:J
:

32 Y

. PR .- _ . .- -
. e T A ® ., m e *a a4 A% < “ e e
..... . o Sl .
f EaPE i Y . LA T v

...‘.'/~¢ l‘ l. .' & .

. Tae T T -'-_. . . e e e e . . o . oo
‘—L“..J‘-'_d_‘_.““‘-.lt‘--A'“.-‘A‘}“-,:J‘I-_ AT SRR SR R SN VLA PR, PRI Wt SR S Sk SR S S S - SO VN S WU . WL TS LS




‘,1. « 8 A .
P A R
a 1 & L .
L
.

Y
.
» T

RAENEAECY

i~ NN

LOTRAT)

.1
.‘
"

)

.EB.

the HSPM fails and, therefore is not a desirable syntactic
filter for common spoken English.

Deterministic parsing, on the other hand, prohitits
backtracking. It works on the realization that '"there is
enough information in the structure of natural language in
general, and in English in particular, to allow
left-to-right deterministic parsing of [most]... sentences"
(Ref 17:14).

The elimination of backtracking dictates more
efficient parsing. A well written deterministic parser is
more accurate (in that it psychologically models the Human
Speech Parsing Mechanism) and faster since it does not
waste processing time (and other resources) constructing
parsing paths which will ©prove to be unsuccessful. Milne
explains:

The assertion of deterministic parsing is that
a natural language grammar can be essentially
a characterisation of a deterministic machine.
However, there are two ways a grammar
interpreter wusing a seemingly deterministic
grammar can simulate non-determinism. These
are backtracking and pseudo-parallelism.

We can prohibit backtracking by insisting that
all grammar substructures are permanent. In a
parsing context this means that, if one item
is attached to another, this attachment can

never be broken... If a word is disambiguated
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to a certain part of speech, it can never be
changed to a different part of speech... This
prevents the grammar interpreter from pursuing
a guess that turns out to be incorrect.

It is possible to avoid backtracking, but

simulate nondeterminism, by taking all
possible paths from a given state
simultaneously. This is known as

pseudo-parallelism.

This method, however, is still not permissable
for a deterministic parser. Using
pseudo-parallelism, it is possible to follow
each permissable transition simultaneously. If
one of the paths fails, the parser does not
return to a previous state, but, instead,
"throws away" any structure built and then
terminates that path. This technique is
therefore also dis-allowed. In deterministic
parsing, building a constituent and then
"throwing it away" is not permitted.

We have two points relating to a deterministic

parser. It must neither backtrack nor |use

pseudo-parallelism. In deterministic parsing,
should a transition be made from some state,
we are guaranteed that the subsequent state
will be on the path to a successful parse, if

such a path exists. We shall consider this to
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be the definition of deterministic parsing
(Ref 17:14,15).

Milne has successfully demonstrated that with a two
buffer (one word) lookahead buffer, his parser accurately
models the HSPM (Ref 17: chapters 3,7,10 & 12). Milne's
parser 1is therefore the ideal choice for use as the English

Parser in the SPEREXSYS.
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C. Concept of the Solution :

On a macro-level, the Spoken English Recognition
Expert System (SPEREXSYS) has data flows in accordance with

the following diagram:

gesT Gutss | SEManTIC
OvteuT SENTENCE
DevicE AnaLyzeR
' y
| { I
& 43 yok
| g de i
l LL (] Qm
Prrrine Sentenc
l < EneLish Staines Encrish
, g anSER ( Leome Grrrman PhRSER
lﬁ Faont Envo ST or Newr
l ,‘i§ ' worps
«
& of &
\L K §\§
User Yoice
SE' Lo
Yrpaey Tl Deconer

Figure 2.2. Hierarchical Design of the SPEREXSYS

This conceptual model has been chosen because it closely
resembles the Levinson model of the HSRS (refer to Figure
1.1). It 4is important to note that this configuration
allows both the English parser (syntactic analysis level)
and the semantic analysis levels to review and comment on
the likelihood of words (modify the word probabilities) as

they are output from the voice decoder. This allows some of

36

LY ‘.~.’.| ..f ............................... g - J VAT PO N -t oL . -
PR N, PR P L LN YO WU W WOl Rudh VW S WL W WS D W I P W DR A A S Py



s

ﬁf . the key conceptual features of the Hearsay II blackboard

system to be incorpoated into the SPEREXSYS (Ref

X

® e Tannl S

7:213-253). Specifically, it allows all levels of syntactic

Y
%ﬁ and semantic analysis to cooperate directly and
- simultaneously to help resolve word recognition
ambiguities. This configuration also allows for the modular
éﬁ development and integration of each of the separate
functions of the SPEREXSYS as recommended by Montgomery
;; (Ref 18:113).
3; Having established the conceptual configuration which
;: will govern the development of the SPEREXSYS, it is now
f; appropriate to consider the issues which constrained its
%g design.
o;) Sufficient background knowledge has been reviewed in
jﬁf this chapter so that the required function of the SPEREXSYS
Eﬁ can be more adequately defined than was presented in the
.{ first chapter.
;i The SPEREXSYS must apply the constraints of English
Ei syntax as defined by the Milne English parser to word
= guesses of questionable reliability which are made by the
'EE voice decoder as it examines the input utterances.
.iz Optimally, these syntactical constraints should include the
3 application of both deterministic parsing and the one word
Eﬁ lookahead constraints which produce strings that are
Fg’ psychologically correct in that they approximate the
;t strings that would be constructed under similar conditions
Sé {iJ by the Human Speech Recognition System. In addition, the
o’
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SPEREXSYS should be designed in such a way that the upper
semantic analysis levels can monitor and influence the word
choice decisions when appropriate.

The use of the words "questionable reliability" in the
above required function statement refer to the fact that,

because of both the inaccuracy of the voice decoder and the

Py

insufficiency of information in the acoustics of the 1
speech, the voice decoder may make wrong guesses as to
which word was most 1likely spoken in any given word time
frame.

In order to keep the SPEREXSYS from becoming so
computationally bound that a real time solution is no
longer potentially feasible, it is imperative that

(ﬂg sentences be <constructed in a deterministic manner. The

PP

following discussion illustrates this necessity.

Let us suppose that our voice decoder is so accurate

PP Sy

that it will place the proper word (the word actually
intended by the speaker/user) within the top three most
. likely choices 992 of the time. (This is currently beyond
the accuracy of state-of-the-art acoustic processors with [
any reaconable vocabulary size). Let wus further suppose
that the sentence being spoken is isolated speech (which is X
easier to recognize than common connected speech) and that i
a 14 word sentence is being spoken. For example, 1let the ?
;i sentence be: "The boy gave the gift to the girl wearing the i
long green plaid dress." Let us further suppose that the

vocabulary size is large enough to provide words which are

38
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ot . fairly close in sound to each of the intended 14 words in
}\. ™ the sentence. The following matrix illustrates the problem
{:

:} as it has been developed to this point:

o

".,:.

™~

v probability

e of
-. :.-
ak} likelihood Word 1 Word 2 Word 3 Word 4 Word 5 Word 6 Word 7
N Highest The toy gave the sift to the
?:? 2nd High, A boy cave a rift two a
ﬁf 3rd High, They ploy save they gift too they
.

Eﬁ Word 8 Word 9 Word 10 Word 11 Word 12 Word 13 Word 14
LN

:?: grill wearing the long green plaid rest,
s
) ‘.ﬁ 5%, girl sparing a wrong grease  played  wrlst,
‘;g curl bearing that gong clean glad dress,
o

o

-l

Bl It can be seen that several sentence strings can be
. constructed from the voice decoder's 1list of top three
iii choices. Each of these could then beé sent to the English

parser to determine which of these =sentences were

:ﬁ grammatically acceptable. Those which are acceptable to the
Sﬁ English parser would then be forwarded to the semantic
-~ analysis levels for further disambiguation. The following
'l; analysis shows that this approach is not feasible,

' \

. One sentence which could be constructed for shipment
S to the English parser is : "The toy gave the sift to the
2

o o grill wearing the 1long green plaid rest.”" Another is: "A
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toy gave the sift to the grill wearing the long green plaid
rest." A third would be: "They toy gave the sift to the
grill wearing the long green plaid rest." It can be seen
that with three different word choices at each of the 14
different word places in the sentence, that the number of
sentences which would have to be constructed and sent to
the English parser would be:
3t* - 4,782,969,

Currently, it takes the English parser about a half s
second to analyze a sentence. This time could be reduced by
a couple of orders of magnitude if the «code was optimized
and run on a much faster (more expensive) machine. With the
best that money can buy, one might reasonably expect to
approach one millisecond to process a sentence through the
English parser. If all other processing and communcation
time in the SPEREXSYS is ignored, it can be seen that under
optimal conditions, this 14 word sentence would take: (1
msec/sentence) x (4,782,969 sentences) = 4,782,969 msec.
This is equal to one hour and 20 minutes to process a
single sentence with a marvelously accurate acoustic
processor. Quite obviously, this is an unpractical approach
to solving the problem. At this point, the reader might
argue that if the analysis were to be completely done in
parallel (over 4 million large computers each processing
one sentence at a time), that real time processing could be

accomplished. The expense, of course, is prohibitive. At

this point the reader might argue that such parallel
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processing capability exists in the human brain. It should
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‘
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also be pointed out that the throughput for the human brain
is about 50 bits per second. That is about 400,000 times
slower than the fastest electronic computer operating under
optimal conditions. It can be shown that it would take the
human brain at least several minutes to perform only the
syntactic analysis of this one sentence. It is quite clear
at this point that performing exhaustive tree searches
(such as those wused in ATN parsers) is not a feasible
approach to solving this problem. Similar calculations rule
out exhaustive pseudo-parallel processing.

It becomes obvious that the syntactic analysis must be
performed in such a manner so that right decisions are
(ib consistently made without having to examine all of the high
probability options. Hence, a deterministic approach must
be wused. At this point, the astute reader will realize that
an English parser based on a deterministic approach must be
used to solve this problem. It is a great boon to AFIT :
speech recognition research that the only working
(properly) deterministic parser in the world is the Milne
English Parser.

The design of the SPEREXSYS incorporates all the
aforementioned requirements and is explained in the next

chapter.
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A III. Design
%
N The SPEREXSYS  was designed using a top-down

hierarchical approach. The top level design was done using

data flow diagrams. The intermediate level design was done
using structure charts. And the low level design was done
using an abbreviated form of pseudo-code which led directly

to the actual coding of the SPEREXSYS.

'?L Three programming languages -- C, Pascal, and LISP --
:gi were considered as languages in which the SPEREXSYS would
ti‘ be programmed. The C programming language was considered
?; because of dits ability to assist in the problems of
Eﬁ connecting the three different computers together (the
w iE) voice decoder, the English parser, and the rest of the
gg SPEREXSYS all run on different computers). Pascal was
;; considered because its highly structured nature was

ﬁ considered to be a valuable asset in both translating the
Eﬁ design into code and in the subsequent testing and
§§ debugging of functionally isolated modules. LISP vas
= considered because of the facility with which it can
f; manipulate word strings. The decision to choose one of
ééi these languages over the others was not made until the low
?i level design stage. During the pseudo-coding of the design
-ﬁ? embodied in the structure charts, it became apparent that
'gs the 1ist processing capability of LISP was the most
:: important consideration in the timely design of the
3g :FP SPEREXSYS. At this point Pascal was discarded as an option.
]
%
= 42
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LISP

was chosen as the primary language in which the

SPEREXSYS would be programmed and C was reserved until the

end as an option in which the I/0 handlers between

the

computers could be written if LISP proved inadequate for

the task. As it turned out, interfacing the computers was

an even more difficult task than originally expected. In

the end, all I/0 and interface requirements were able to be

handled by Franz Lisp (the version of LISP which was wused

for this program), but the decision to discard C as an
option was not made until final success was achieved in
satisfactorily interfacing the computers. The details of

how this was done are covered more completely in chapter

four and appendix C.

A. Top Level Design

The top 1level design specifies the major functional

modules and describes the primary data flows needed between

the modules.

In the data flow diagram of the entire speech system's

interrelation (figure 3.1), it can be seen that the
SPEREXSYS interfaces with the voice decoder, an output
device, and an input device. The speaker/user speaks into

the system 4input microphone. This uttered input is divided

into eight millisecond time slices and analyzed (as

previously outlined in chapter two). Eight milliseconds is

therefore defined as the basic unit of time. Time zero is
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defined to be the beginning of the first eight millisecond

time slice of the utterred input. Time one is the beginning
of the second eight millisecond time slice, and so forth.

The SPEREXSYS solicits input to itself from the voice
decoder by sending to the voice decoder a 1list of next
word-guess-requests (nextguesslist). Each word-guess-
request contains a string number, a time, and a set of
grammatical types. The string number is attached to the
voice decoder's output (wordguess) for the
word-guess-request and is the SPEREXSYS identification tag
for that particular sentence string (which, of course, is
still wunder construction). The time is the approximate
location of the beginning of the next word in the input
utterance. Specifically, it is the exact time at which the
previous word terminated. For the first word of the uttered
input, this time is zero. (Note - because of the overlap of
terminal and next- word-initial phonemes in connected
speech, the time parameter passed in the next-guess-reguest
will sometimes mark a point which occurs after the
beginning of the next word for which the voice decoder will
search). The set of grammatical types specifies the
grammatical type <constraints which the English parser has
placed on the pnext word to be guessed for that string.
These grammatical constraints serve to reduce the effective
vocabulary size which must be searched, and hence, improve
the reliability of the voice decoder.

In response to each next-guess-request (in
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nextguesslist), the voice decoder prepares a list of words
(wordguess) which fit both the time constraints and the
grammatical constraints and which are close enough matches
to the input utterance to be likely candidates for the next
word in the sentence string. The 1likelihood of each word
(the <closeness of match) is annotated by the voice decoder
by an assignment of a probability of correctness to each
word. The time of each initial phoneme (referred to as timl
later) and of each terminal phoneme (referred to as tim?
later) are also sent to the SPEREXSYS for all of the words.

This interchange of next-guess-requests and word
guesses between the SPEREXSYS &and the voice decoder
continues iteratively until the SPEREXSYS is satisfied that
it has constructed the user intended sentence.

At this point, the SPEREXSYS verifies its results by
sending the decoded sentence to the output device (in this
case a CRT) and awaits user approval or disapproval of its
choice. If the user approves, then the decoding of the next
sentence begins where the approved sentence terminates. If
the wuser disapproves of the sentence, then the SPEREXSYS
sends the wuser the next most 1likely sentence. This
continues wuntil the SPEREXSYS finds the right sentence or
gives up and asks the wuser to repeat the sentence with
particular care given to the consistent pronunciation of
the words which the SPEREXSYS improperly identified.

The data flow diagram which describes the top 1level

design of the SPEREXSYS is drawn in figure 3.2. The data
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flow, as has already been explained, begins with the
English Parser Front End (EPFE) issuing a request to the
voice decoder for next word guesses (nextguess) for each of
the active word strings (an active string is a candidate
sentence under construction). The voice decoder responds
with a list of possible next words for each active string.

Each of these possible next words is filtered through
the short term memory. The short term memory is
functionally similar to the psychologically apparent
phenomenon of the short term memory in the HSRS. The short
term memory in the HSRS favors the interpretation of words
which have recently been spoken (in the current
conversation) if an ambiguity exists between a recently
spoken word and a word which approximately sounds the same.
An example which illustrates this phenomenon is presented
in appendix E.

If a word which has been recently spoken is one of the
words identified by the voice decoder as a possible next
word, then the probability of likelihood (assiéned by the
voice decoder) for that word is increased in the short term
memory. The short term memory is updated with the 1list of
all words in a sentence as soon as that sentence receives
approval from the user. The short term memory is empty if
the sentence being recognized is the first sentence in a
conversation; and therefore, for the first sentence, no

word probability modifications occur in the short term

memory.
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The short-term-memory-modified-word-guess-list then 1is
input to the EPFE., 1In the EPFE (see figure 3.3) the word
probabilities are again modified to model a second
phenomenon of the HSRS -~ this is the phenomenon of longer
words having preference over shorter words. The formulation
and experimental verification of this hypothesized
phenomenon is described in appendix F. The top few words
are chosen for each string and the others are discarded.

This abbreviated 1list of highest ©probability word
guesses is now sent to the start-new-strings module (see
figure 3.3) where a new string is started for each word in
wordguesslist. Each of these new strings consists of the
ancestor string augmented with the new word.

This list of new strings is now sent to the
kill-low-prob-strings (see figure 3.3) module which
calculates a likelihood of correctness probability for each
of the new strings and only keeps the top few most 1likely
ones.

These most likely strings ‘are now sent, one at a time,
to the English parser. The English parser analyses each
string and provides a list of possible next word grammar
types (epresponselist -~ see figures 3.2 & 3.3). This list
of possible next word grammar types for each string is
examined for complete sentences by the formulate-
nextguesslist-from-epresponse module. If complete sentences
are found, they are reserved for later transmission to the

semantic analyzer (sentstringlist -- see figures 3.2,3.3 &
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The strings in stringlist are started through the
entire cycle all over again by sending the list of possible
next word grammar types (in the manner which has been
previously explained) to the voice decoder (nextguesslist).

In spoken English, sentences are almost always
separated by a brief period of silence. The voice decoder
also 1looks for these periods of silence. When it finds one,
it passes that information to the English Parser Front End,.
When one of these periods of silence (called an FPUNCT --
final punctuation, same as a sentential pause) coincides
with a point at which the English Parser has determined
that a string could legally be terminated as a complete
sentence, this condition is noted in the list of possible
sentences (sentstringlist) which the EPFE 1is storing for
later transmission to the Semantic Analyzer.

This continues until either the 1likelihood of all
strings under construction (calculated in the
kill-low-prob-strings module in figure 3.3) falls below a
user set acceptable threshold, or the voice decoder sends
only FPUNCTS (meaning that no further words exist in the
input utterance). (Note -~ the user set acceptable threshold
for the 1likelihood of string correctness is dynamically
modified by the semantic analyzer during the operation of
the SPEREXSYS to optimize speed and correctness).

The data flow design of the semantic analzyer is shown

in figure 3.4 . It is important to remember that the design
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Figure 3,4, Semantic Analyzer
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E; . of a psychologically accurate semantic analyzer is beyond
5?; - the scope of this thesis research. This semantic analyzer
j;i functions only as a crude shadow of the functions of the
ii various levels of semantic analysis in the HSRS to the
- extent that they are understood at all,

\}; At the initialization of the SPEREXSYS, the semantic
Eéi analyzer requests the user to select the <cutoff threshold
5 for the 1likelihood of correctness of sentence strings, and
;é the number of words which will be accepted to form new
fii strings from each 1list of possible next words which the
;: voice decoder provides for each string. These and other
E:; initialization parameters are passed to the EPFE.

;% When the EPFE returns the list of candidate sentences
:JJ 1{} to the Semantic Analyzer (sentstringlist), the Semantic
'%ﬂ Analyzer rank orders each sentence in the list. With a few
_i% exceptions, the list will be ordered first to favor the
{; sentences which had coincidental agreement on final
?: punctuation location by both the English parser and the
$§ voice decoder, and second to favor longer sentences over
‘ shorter ones.

.\i The sentences are printed out to the wuser one at a
Té; time beginning with the most probable. After each sentence
S is output, the semantic analyzer waits for the wuser to
gﬁ approve or disapprove its choice. If approved, the REINIT
?; module, reduces the margins of acceptable error, augments
:f the short term memory with the approved sentence, and
S; Z£} instructs the EPFE to begin looking for the next sentence
%
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%ﬁ .. in the uttered input at the time the last sentence
SA i terminated.

;i If the sentence is not approved by the user, the next
QE most probable sentence is output. This continues until
- either the user approves a sentence or sentstringlist is
L exhausted. When sentstringlist is exhausted and the user
%% still has not approved a sentence, this information is
5 passed to the REINIT module.

jg At this point, the REINIT module increases the margins
ig of acceptable error, asks the user to repeat his sentence
5{ paying particular attention to the pronunciation of the
_E words which the SPEREXSYS failed to properly interpret, and
ES instructs the EPFE to try again.
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B. Intermediate Level Design

Structure charts were used to develop the intermediate
level design. The structure charts of the entire system
were 1initially drawn only to clarify the modular design.
This facilitated the coding of the high level design. Once
coding began, these structure charts were extensively
modified and expanded. This was due in large part to the
recursive nature of LISP. The structure charts presented
here are not the originals. The structure charts presented
here are those which accurately reflect the completed
design.

The entire SPEREXSYS system has been divided into
eight major-function diagrams. The structural and
functional description of each of these eight diagranms,
along with the presentation of the rationale for the key
design decisions, is the purpose of this section.

The symbology and conventions used here differ from
standard structure chart practices in three ma jor ways. All
three of these are because of the nature of LISP.

The first of these differences is that global

variables are not shown being passed between modules. It is

normally considered poor programming practice to have and
extensively use global variables (as this contributes to
poor coupling and cohesion). However, in order to take full

advantage of the recursive nature of LISP, global variables

were used extensively in this design. (No significant
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problems were encountered during the debugging of the
system which could be attributed to the extensive use of
global variables!). Only 1local variables are shown being
passed between modules.

The second major difference is that diamonds are not
used to indicate decisions. Decisions as to module
selection occur for almost every module. (This «can be
easily seen by examining the number of modules which begin
with "cond" statements). Again, this is due to the
recursive nature of LISP. It was thought that the use of
diamonds would unnecessarily clutter the diagrams making
them more difficult to read.

For similar reasons, iterative arrows were not used --
‘jb which is the third and final major difference between the
standard conventions and those used here.

Figure 3.5 displays the structure of the top levels of
the SPEREXSYS. The SPEREXSYS driver (module 0) first calls
the SPXSINIT (module 1) which introduces the user to the
SPEREXSYS and initializes the system. The driver then calls
SEMANALYZER (module 2). SEMANALYZER never returns control
to the driver. It is psychologically accurate to do so
since the semantic analysis levels represent the highest
levels of control in the HSRS. The short term memory module
(module 3) is never called by the system driver. It is
intended that its function be completely parallel to the

rest of the system as it constantly adjusts the
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EPFE (modules 2.2.%)., It is wupdated wupon the positive
approval of the user of each decoded sentence. In this
system, this is the earliest that wupdating occurs (as
opposed to updating as words are decided within a sentence
prior to receiving the complete approval of the sentence).
Because of the lack of psychological data, this decision
was made to favor the most conservative approach; hence,
the short term memory is updated only when the system has
been assured by the user that a sentence has been properly
interpreted.

It can be easily shown that the short term memory in
the HSRS does function to increase the 1likelihood of
selecting a word which has recently been spoken (see
appendix E). No data are available on how much the
likelihood is increased. Because of this lack of data, it
was decided (based on dintuition) to increase the voice
decoder assigned word probability one-third closer to 1. No
claim is made that this 1is accurate. This probability
increase can be easily changed as the equation for it was
set aside in a separate module (module 3.1).

The SEMANALYZER module first calls SEMANINIT (module

2.1) which asks the user to set the initial parameters

searchdepth and acceptthresh. searchdepth is the number of
words deep (the most probable word is at the top) the voice
decoder will have to go in order to guarantee (to some user
desired degree of reliability) that the correct word will

be found. The Vbetter the voice decoder is, the smaller
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searchdepth will need to be. acceptthresh is the acceptance
threshold of the average probability of the last three
words in a string. If the average probability of the last
three words in a string ever drops below acceptthresh, the
string 1is discarded. The use of these terms will be
explained more fully later.

Once the initialization parameters have been set, EPFE
(module 2.2) is called. The EPFE will be explained more
fully later as it is the subject of the next seven
structure charts., The EPFE returns control to the
SEMANALYZER when it has arrived at a list of candidate
sentences,

The RANKSENTS module (module 2.3, Figure 3.5a) is then
called. RANKSENTS orders each of the sentences, which EPFE
returned, in decreasing order of the probability of
likelihood. Two factors are considered when rank ordering
these sentences. The first and most important factor is
whether or not a sentential pause occured in the uttered
input at the same point that the English parser determined
that the string was a complete sentence (as previously
discussed). Since this is almost a nonvariant phenomenon of
human speech (it occurs in all human languages), it is
given an overriding emphsis by adding the value of 1 to all
string probabilities in which it occurs (this is done in
MODFPUNCTS -- module 2.3.1.1). The probabilities for all

the words in each string are cummulatively added, along

with 100 4if a sentential pause occurs, to become the
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sentence probability for each sentence. (Note- This
sentential pause, on rare occasion, does not occur at the
N end of a sentence. Otherwise, sentences without it could be
“ discarded.). The cumulation of all word probabilities in a

sentence is the mechanism for favoring longer sentences
KON over shorter ones. The need to do this is illustruated by

the sentence:

. ”
8

e The boat has nine oars on it,

Ei The following strings are all complete sentences and would
EE be identified as such by the EPFE:

:f The boat has.

i;{ The boat has nine.

’;i The boat has nine oars.

':J G? The boat has nine oars on.

?i The boat has nine oars on it.

Ei The only way to preclude the premature termination of a
ﬂ: string is to favor longer sentences. A cursory examination
5% of English conversations reveals that this accurately
i; ‘models the HSRS. If further words continue to make sense as
f ‘part of a previously completed sentence, then the sentence
if is continued by augmenting those words.

?E The 1list of sentences, along with each sentence's
if newly calculated 1likelihood of probability (done in
\ GETSTGPROBS), is sent to ORDERSENTLST (module 2.3.2) along
fﬁ with the rank ordered 1list of all of the sentence's

probabilities (ranked in decreasing order in ORDERLIST).

ORDERSENTLST sends the highest sentence probability to
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TOPSENT (module 2.3.2.1) which returns the first sentence
in sentstlst which matches that probability. NEWSESLST
removes that sentence from the old sentstlst. This is so
that that any sentence with the same probability will not

fail to be selected the next time. (The next probability in

problist will be the same as the last one in this case).

ORDERSENTLST reorders the 1list of sentences in decreasing
order in this manner. Note that if more than one sentence
has the same probability, then the one which appears first
in the original sentstlst will appear first in the new rank
ordered sentstlst. Without semantics, it is not possible to
distinguish between them in any way other than some
arbitrary selection such as this,

After the sentences have been rank ordered, PRINTSENT
(module 2.4) is called. PRINTSENT prints a banner to the
use: telling him that the top choice sentence follows.
OUTRESTSENT (module 2.4.1) then prints the sentence without
all the extraneous information such as word probabilities
and times, sentence string number, and sentence
probability.

The USERFDBK module (module 2.5) is then called which
solicits the wuser's approval or disapproval of the
sentence., If the wuser approves, REINIT (module 2.6) is
called. Otherwise, PRINTSENT is called and the next most
likely sentence is printed. If the list of sentences is
exhausted before the right one has been found, then REINIT

is called and passed this informstion,
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REINIT reinitializes parameters for the next call to
the EPFE. If the last attempt to interpret the sentence was
successful, then searchdepth is decreased by one (unless it
is at two) and acceptthresh is increased by .02. Inittim,
the variable which tells the EPFE where to begin looking in
the input utterance for the next sentence is set to the
termination time of the 1last word (or FPUNCT) in the
approved sentence (done by GETTIM1). The approved sentence
is then sent to the short term memory.

If the wuser did not approve a sentence, acceptthresh
is arbitrarily decreased by .05 and searchdepth is
increased by two. (Note -- These are different values from
the success adjustments to keep the system from
ping-ponging back and forth between success and failure).
Inittim is left as it was for the 1last sentence and the
user is asked to repeat the sentence more carefully.

Control is passed back to the SEMANALYZER module and
EPFE is called again.

When the English Parser Front End is called (module
2,2, figure 3.6), the global variables for the EPFE are
initialized by calling GLOBAL (module 2.2.1). GLOBAL also

loads two dictionaries ~- VOC.DICT and DICT.SPXS. VOC.DICT

defines the lists of legal and illegal features (grammar
types). DICT.SPXS defines the words in the vocabulary,

which are common to all parts of the system, by feature

types.

FORMNXGS (module 2.2.2) creates the list of next guess




L i et ol

TR TN, v

“¥ -

&LOBAL

22.1

FORMNXE S
(ssE P16 3.7)

2.2.2

EFPFE
2.2
Y
- Z
w AA\
4 S»
v
®
Q
of
)
E
INTERFVOCDSL DECToPWDS STALTNSTS KILLOWSTS ITEPREST
(seF Fie 3.8) C5EE F1é 3.9) (seE F16 3.19) (sex F1e 3.0) (seE Fi6 3.4
22.3 22.4 22.5) 2.2.6 2.2.7

Structure chart of EFFE

Figure 3.6,

57a

..A_
-A,

1
i
[ QA
A

. .a,A
‘4

A e

s ' s a




...........................

requests which will be sent to the voice decoder. This
process will be explained in more detail later.

Next the EPFE calls INTERFVOCDEC (module 2.2.3) which
functions as the communications interface between the EPFE
and the voice decoder. This module and its sub-modules (to
be described later) output the list of next guess requests
to the voice decoder and receive and format the voice
decoders response (wordguess) back to the EPFE.

DECTOPWDS (module 2.2.4) is called next by the EPFE in
order to choose the top most probable words among those
which the voice decoder sent to the EPFE. (This process
will be described in greater detail later).

These most probable words are each used to determine
new strings by concatenating each of them to the end of its
ancestor string. This is accomplished by the
START-NEW-STRINGS module (STARTNSTS -- module 2.2.5) and
will be explained more fully later.

In order to prevent the number of active strings from
becoming larger and larger (it would increase geometricaly
by the power of the value of searchdepth if not bounded),
the KILLOWSTS module (module 2.2.6) is called for the
purpose of selecting only the most probable strings. It is
this module which is responsible for accurately reflecting,
in the entire system, the deterministic nature of the
English Parser. This process will be elaborted on later.

To complete this cycle, ITEPREST (stands for:

Iteratively Sends English Parser Response Strings —- module
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2.2,.7) sends the active strings to the English Parser, one
at a time, and forms a list, by string number, of the legal
grammar types for the next word in each string. This 1list
is then sent to FORMNXGS and the entire process begins all
over again. The details of how this happens, as well as the
explanation of how this <cycle terminates itself, will be
discussed later.

The FORMNXGS module and its sub-modules (figure 3.7)
perform the function of interpreting the English Parser's
response and translating it dinto a form which will be
understood by and wuseful to the voice decoder. If the
English Parser has identified any strings which cannot be
extended to form a grammatically correct sentence, it will
not identify any types for the next word. When this occurs,
the English Parser's response for that string is said to be
nil. |

The KILNILSTS modules (modules 2,2,2.1.%) are
responsible for eliminating the strings from the active
string 1list when their corresponding English Parser
response (refered to in these modules as next2) is nil.
This is done by calling LOOKATNEXT2 (module 2.2.2.1.1) for
each next2. When LOOKATNEXT2 identifies that next2 is nil,
it calls the ELIM module (module 2.2.2.1.1.1) to have the
corresponding string eliminated from the active string list
and also to eliminate that particular next2 from the
English Parser response list.

When this has been accomplished for all the strings in
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the English Parser response list (EPRESLST), the FPUNCTPROC
module (module 2.2.2.2) is called. FPUNCTPROC <calls
EXAMNEXT2 (module 2.2.2.2.1) for each next2. Here each
next2 is examined to see if any of the legal next word
grammar types is an FPUNCT (final punctuation). When it
finds such an occurence (found in the CHECKFPUN module),
the: ADDTOSESTLS module (module 2.2.2.2.1.2) is called which
adds that completed sentence to the sentence list being
built for transmission to the Semantic Analyzer.

After nil strings and FPUNCTS are taken care of,
MAKENXGSLST (module 2.2.2.3) is called. This module and its
sub-modules are responsible for the final formation of the
list of next word guess requests which will be sent to the
voice decoder. One at a time, the next2's are sent to
BUILDNXGS (module 2.2.2.3.1) where the grammatical types in
next2 are translated into the grammatical types which the
voice decoder will understand (done in modules 2.2.2.3.1.1
nd 2.2.2.3.1.1.1). This translation of next2 is now
referred to as nextl. The time in the input utterance which
will be used as the approximate starting point for the next
word is found by getting the termination time of the last
word in the string (done in modules 2.2.2.3.1.2 and
2.2.2.3.1.2.1). The next guess request for that string is
then formed by concatenating the string number and the new
word starting time to the nextl for that string. This new

list constitutes the next guess request for that string and

is concatenated to the list of next guess requests.




Now that the EPFE 1is prepared to output its list of
next guess requests to the voice decoder, INTERFVOCDEC is
called. INTERFVOCDEC (module 2.2.3, figure 3.8) is
responsible for the interface between the EPFE and the
voice decoder.

Normaly, the way to proceed at this point would be to
simply print the list of next guess requests out the port
connected to the computer which the voice decoder is
running on. This could be accomplished with a single three
word LISP command. For reasons which will be only partially
discussed here and more fully discussed in <chapter four,
this module was built to do considerably more processing
than simply outputting the list of next guess requests.,

In order to analyze how effectively the English Parser
generated legal-next-grammatical-types were reducing the
vocabulary size which the voice decoder had to consider, a
list of all the vocabulary words (from the entire 200 word
vocabulary) was found and printed which met the constraints
imposed by the English Parser. When this was done, a
message was printed which told the user how many words were
in this reduced list. This allowed for continuing analysis
of how much the English Parser vas improving the
reliability of the voice decoder (reference the previous
discussion on this subject).

The English Parser's feature list contains complicated
expressions of set unions, intersections, and compliments.

An example of onme of these complicated feature expressions
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2
;fg - (which would be part of the epresponse) might be:
o o [noun or (verb and not (adj or adverb))].
i? This is to be interpreted as the set of words which are
'Ei nouns unioned with the set of words which are verbs -- but
=2 the verbs cannot be either adjectives or adverbs (unless,
_;; of course, they are nouns).
;ig In order to interpret these complicated set
2?; expressions and produce a set of words which conform to
:éﬁ these constraints, PROCFEATTERM (module 2.2.3.1.1.1) is
Eta called which recursively disassembles each feature list and
i:ﬁ transforms it into a legal set of words. In order for it to
'{i accomplish this, union, intersection, and complimenting set
.i% functions were written for its use (modules 2.2.3.1.1.1%),
:': a After each epresponse (an element of the 1list of
ii English Parser responses) 1is processed and output, the
,?ﬁ INTERFVOCDEC module waits for the voice decoder's response
:*: (wdgs -- word guesses -- reference previous discussion on
%é this subject). As each voice decoder response 1is received,
:;: it 1is concatenated on to the list of word guesses. This
‘—ﬁ continues until the entire list of next guess requests has

been processed.

The wuser has already informed the SPEREXSYS (at system

initializetion) as to the maximum depth the voice decoder
%E will have to go to guarantee that the correct word has been
?i recognized. This value was assigned to the variable ;
:% "searchdepth." Therefore, it makes sense at this point to i
E; - trim all of the voice decoder's responses for each string ;
AN .
o
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3
t; o to the top "searchdepth" probability words in order to
:ﬁ - conserve processing resources (most 4importantly processing
:?ﬁ time). Instead of just chopping the 1list off below the
;% third highest probability word, some modification of word
N probabilities is done at this point which model the
‘E: psychological processes of the HSRS. As have been already
és discussed, these are the  phenomenons of increasing
» likelihood of selection for both longer words and recently
B spoken words.

The primary purpose of the DECTOPWDS module (module
—;f 2.2.4, figure 3.9) and its sub-modules is to accomplish the
iﬁ above functions. In addition, if a sentential pause (refer
f{ to previous discussion of this subject) has been sent by
@ the voice decoder, it is here that it is detected (done by
'i% FINDFPUNCT -- module 2.2.4.1.1) and added to the end of the
:Eﬁ appropriate sentence in the 1list of sentences being
-~ reserved for later transmission to the semantic analyzer
~$ (done in AUGSENSTG -- module 2.2.4.1.2). If no matching
ig sentence is found in that list, then the occurence of a
;~ sentential pause is ignored.
sa After this has been accomplished, the short term
;; memory reviews every word in the list. If it finds any that
- have been spoken in recent past sentences (since the start
g; of the conversation), it increases their probabilities by
‘gi moving them one-third closer to 1.0. This equation is
sf arbitrary because of the lack of psychological data which
;ﬁ :;: provides an accurate quantification of the probability
- 63
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increases.

After the short term memory modifies the probabilities
of any recently spoken words, the CHANGEPROB module (module
2.2.4.1.3) modifies the probabilities of each word based on

the following equation:

new prob = 1,2 (tim2 - timl)/(maxwordtim)(1l - old prob).

This equation was isolated from the rest of the CHANGEPROB
code by putting it in the CALCNEWPROB module (module
2.2.4.1.3.1) so that it «can easily be changed. This was
thought to be necessary because it too is an arbitrary
specification of the increase of word probabilities because
of the 1lack of psychological data. The above equation
modifies word probabilities in only a very minor way, but

it 1is enough to prevent a word boundary from being

interpreted prematurely because of a part of the word also
being a very close match to the uttered input. For example,
it would prevent the word "ambiguous" from being
interpreted as the four words "am big you us."

GETPROBLST (module 2.2.4.1.4) now strips off the
probabilities of each word for a single voice decoder word
guess response and sends them to ORDERLIST (mod+1le
2.2.4.1.5) which rank orders them in decreasing order.
FINDTOPWDS (module 2.2.4.1.6) then gets the Nth element in
the 1list where N is the value of searchdepth. (Done in

TOPFUNCT through GETTOPWDS). This minimum acceptable
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A5 _ probability is sent to STRIPTOPN (module 2.2.4.1.6.2) along
i'” with the list of words from the word guess voice decoder
‘4

éﬁ: response. STRIPTOPN discards all words with probabilities

less than the minimum acceptable probability.

- This procedure continues until each word guess
;i& response has been processed.
ég : Now that only the top searchdepth number of words are
;j? still active for each string, this reduced list is sent to
jﬁf STARTNSTS (module 2.2.5, figure 3.10) where the new strings
i; are formed.
ig' In the event that this 1list is empty (which would
_;i occur if the voice decoder only sent back FPUNCTS --
ifi signaling that the end of the user's uttered input has been
m @ reached), the EPFE will return control to the SEMANALYZER
.? module of the Semantic Analyzer.
‘iﬁ STARTNSTS sends the entire stringlist (list of active
‘: strings) to NEWSTRINGS (module 2.2.5.1) which sends one
i;é} string at a time to FINDWDSMATCH (module 2.2.5.1.1).
fﬁf FINDWDSMATCH does two things. First it sends the string
'E: number (of the string it is working on) to GETWORDS (module
:; 2.2.5.1.1.1) which returns the top searchdepth words
;i: corresponding to that string number, then it sends the
'?5 string and its new top next words to MAKESTS (mcdule
é; 2.2.5.1). MAKESTS makes new strings, one for each of the
ES top searchdepth next words, by appending the word to the
:E. end of the string, giving that string a new wunique string
*:1 ‘iii number, and concatenating that string to a variable called
",
".EE:?
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OPTSTGLST. OPTSTGLST was set to the value of an empty 1list
before entering the STARTNSTS module. Before exiting the
STARTNSTS module, STRINGLIST is assigned the value of
OPTSTGLST. In this way, old strings (the ancestor strings
of the new strings) are all eliminated, and only their high
probability children are allowed to continue and compete
for survival in the KILLOWSTS module (module 2.2.6). But
before they are allowed to continue on to the KILLOWSTS
module, they are first sent to MAKEDECISION (module
2.2.5.2) where the user is informed of the list of third
words from the end of every string. In maintaining the
psychological accuracy of modeling the HSRS which the
English Parser provides through the use of its one word
lookahead theory. Because this one word lookahead relies on
the fact that there is no wuncertainty as to the proper
identification of each word, and since this word
identification and word boundaries are not yet known with
only one word lookahead, it has been deemed appropriate to
use two word lookahead for the determination of those
strings which will continue to survive. Syntactic function
will continue to be assigned to guessed words based on a
one word lookahead. This compromise is expected to maintain
the psychological similarity of the HSRS while allowing for
the string to develop further before making a final
decision on the proper word in a given word place. It is
necessary to make a decision on which of these third words

back from the end of the active strings is really the
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correct word.

It is <critical to an adequate understanding of this
thesis that the reader fully grasp why a decision is being
made now on the third word back from the end of all active
strings.

IT IS AT THIS POINT IN THE PROCESS THAT THE SEMANTIC
ANALYZER, WHICH WILL MAINTAIN THE UPPER LEVELS OF SEMANTIC
ANALYSIS, TO INCLUDE THE SEMANTIC NETWORK DESCRIBED IN
CHAPTER 5 AND APPENDIX D, WILL HAVE TO COMMENT ON THE WORD
. SELECTION IN THE EPFE. Any semantic commenting about words
% prior to their appearance as the third word from the end of

a string (with the exception of the 1last two words in a
complete sentence) is probably premature. The Parser cannot
'ﬁ? be reasonably confident that it wunderstands the function
(grammatically) of a word until it is able to see the next
word. The semantic analyzer cannot comment on the
reasonableness of a word (based on its meaning) until it
understands the function of that word (i.e. -- whether it
is supposed to be a noun, or a verb, or an cdjective --
most nouns can function as either of these three).

Therefore, it follows that the semantic analyzer will not

N normally be asked to comment on the 1likelihood of a word f

until 4t is followed by at least one other word. But again,
because of word identification ambiguities, a more informed

decision can be made using a two word lookahead instead of

only the one word lookahead which Milne's theory dictates.

Figure 3.11 illustrates the structure of the KILLOWSTS
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module and its sub-modules. The number of active strings in

7 -'.\
™ b the system would increase geometrically by the power of the
jz: value of searchdepth if they were not selectively deleted.
jﬁ It is the responsibility of these modules to selectively
8y delete all but the top few most probable strings. In order
= to do this, probabilities of likelihood must be assigned to
:i all strings.
It was initially decided that only the last three

ES words of each string should be considered in determining a
gg string's probability of 1likelihood. This was in order to
.$ incorporate all of the psychological modeling of the HSRS
;S which Milne demonstrated was attainable if the decisions on
<.
(2 word identities were made based only on the next two words

‘:a in the sentence. In order to do this, it was initially
> envisioned that the EPFE should make a decision on the
Ef third word back from the end of a string (all strings in
- the system would be identical up to the fourth word back
E& from the end of the string). After further consideration of
a§ this proposed constraint, it seemed unreasonable to force a
e decisioﬂ on the third word from the end of the sentence
:é only because that was the point at which the HSRS made
\E syntactic decisions. It became evident as this was
zf discussed that since the identity of a word requires
;E semantic (not only syntactic) judgement, and it was known
:S that not all semantic decisions were made on a word when
~

-

only the next two words were known, a design compromise was
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made to calculate string probabilities based on all of the
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e .. words in a string, and then to choose the top n-squared
. )

o strings as the survivors. In connected speech, this does
o not force a decision on the third word back from the end of
»

e a string, but allows ambiguity of the third word back from
N

. the end of the string if the cummulated probabilities of
; all the words in a string are high enough to compete with
X the :other survivor strings. Note that for separated word

'a"a 2" a

4\—4
')
£

speech, where the word boundaries are known, this would

4 |

still force the decision to make the third word back from

A

the end of all active strings identical. Tree search

»
a ¥

diagrams were used to prove this conclusion.

a Further, it was decided that when the cummulative

3 probabilities of the last three words of any string were

o ‘j’ less than the minumum acceptable threshold (acceptthresh),

E that the string would no longer be considered.

2 The CHOPTOMNS module (module 2.2.6.1) is respomnsible

- for eliminating all but the top searchdepth-squared highest

3 probability strings. GETSTGPROBS (module 2.2.6.1.1)

?: calculates string probabilities (done in CALCSTGPROB), and

b then makes a list of these probabilities (done in STGPROB).

;; This 1ist 1is sent to ORDERLIST (module 2.2.4.1.5) to be

: ordered in decreasing order. This ordered list is then sent K
-: to GETTOPSTS (module 2.2.6.1.2) which returns only the top :
? searchdepth-squared strings.

;i These top strings are then sent to ELIMMINACC (module

f 2.2.6.2) where the probabilities for the last three words

,: ’%& are calculated (done in OVERMIN) and compared with

s
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acceptthresh (done in CHECKMINPR). Those which do not pass
this test, are eliminated from further consideration.

If no strings have survived to this point (are still
active) then the EPFE returns the 1list of accumulated
complete sentences to the Semantic Analyzer and control is
passed back to SEMANALYZER.

Those strings which do survive, are sent to the
English Parser by ITEPREST and its sub-modules (Figure
3.12). ITEPREST pulls one complete string at a time off the
list of active strings and sends it to INTERFEP (module
2.2.7.1). INTERFEP functions as a driver for its
sub-modules. First, STGPRINT (module 2.2.7.1.1) forms each
string into a command which the Parser can understand and
outputs that command to both the Parser and the user's
terminal. Second, STGPRINT reads the English Parser's
response and concatenates it, with the appropriate string
number, to the new 1list of English Parser responses
(epreslst).

This new list of English Parser responses 1s sent to

the FORMNXGS module and the entire cycle is started again.

e
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C. Low Level Design

The 1low 1level design of the SPEREXSYS was done with
pseudo-code. Standard pseudo-code is pascal-like in its
structure and terminology. LISP does not look much like
PASCAL in either imnstruction function or in structure. Once
LISP was chosen as the language in which the SPEREXSYS was
to be written, very wunconventional pseudo-code was the
result. It was, at best, an informal system for annotating
how the functions were to be structured and coded. In the
end, it was wuseful for assisting in the coding of about
half the modules. The others, especially the interface and
the 1lowest 1level recursive modules, were written as their
need became apparent. The original pseudo-code was not
modified first. This was largely do to the growing
realization (LISP was a very new language to this
researcher at the outset of this project and only a very
shallow understanding oi how to properly wuse it had been
achieved) that the structural thinking processes which take
full advantage of the recursive power of LISP are not
eagsily described in pascal-like pseudo-code.

For these reasons, it has been decided that the

commented listing (appendix A), the data descriptions in
the data dictionary (appendix G), and the preceding
intermediate level design narrative would be sufficient to

describe the low level design of the SPEREXSYS.
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IV. Implementation, Testing, and Validation

’
o

“
L

- .
Eé This chapter is devoted to explaining the specifics of
EE the operation and results of the SPEREXSYS. When reading
¥ the section on the implementation of the SPEREXSYS (section
gﬁ A), it will be useful to also reference appendix C which is
éz a short wuser's manual on how to set up and operate the
o SPEREXSYS.
‘Ef Appendix B is an example run on the SPEREXSYS
‘gg attempting to recognize the sentence: "The peak got snow."
fﬁ It will be useful to reference this appendix in order to
3 better understand the discussion in section B on testing
§ and validation.
N @ A. Implementation
N
|
R The first and most important item of discussion in the
fg implementation of the SPEREXSYS is that the Voice Decoder
Eﬁ was not finished in time for integration into the system.
= This necessitated the simulation of the Voice Decoder's
iz operation by a semiautomated process under human user
§§ control. This did not significantly impact the testing of
& the SPEREXSYS since the SPEREXSYS was designed to treat the
f}; Voice Decoder as a black box with a very limited and
“g strictly defined data transfer between the SPEREXSYS and
N the Voice Decoder. Any kind of voice decoder (isolated or
?g ’5? connected word, small or 1large vocebulary, any type of
ﬁ
:g 72
%) : -
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feature set extraction, amy bit rate, any kind of word
recognition scheme) could be used as 1long as it has the

following attributes:

1. It can remember the input utterance.

2. It can determine the acoustic likelihood of
match of words in the vocabulary which might
be the next word in the input string beginning
at or around some specified time in the input
utterance.

3. It can identify the start and stop times of

every word which it determines to be a likely

match.

It was therefore decided to use the acoustic analyzer of
the HSRS as the black box voice decoder since nothing else
was ready for integration. It should be noted that the HSRS
voice decoder which was used purposely made misjudgements
as to word identification likelihoods in order to test the
flexibility and responsiveness of the SPEREXSYS. These are
specifically described in section B of this chapter.

In order to assist the human user in making the
appropriate voice decoder decisions, the process of word
selection was semi-automated by printing out only those
words of the vocabulary which meet the grammatical

restrictions which the English Parser placed on the next

word to be guessed for each active string. This insured

.................
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.t

.. that the human voice decoder would only pick next words

3 . which were grammatically acceptable.

The output from the SPEREXSYS to the Voice Decoder was
>

'ff sent to the C.R.T. of the SPEREXSYS user's terminal in
‘.!

order to be able to keep a script (log) of all the data

exchanges., For the same reason the input to the SPEREXSYS
from the Voice Decoder was input at the keyboard of the

SPEREXSYS user's terminal. :

g The interface between the VAX computer in the AFIT/EN j
‘. 1 1
‘? building (on which the EPFE and semantic analyzer ran) and

[] 1

the DEC-10 computer in the Avionics laboratory building (on :

%, which the English Parser ran) was a little more complicated :
5 and difficult. !
o @ It required the wuse of at least four terminals and ;
Eﬁ four modems. On occasion, up to seven terminals (with

E modems) were used. The additional three were helpful in the :
o tasks of line control (between the VAX and the DEC-10) and

‘g systems information management. Only the function of the 3
fg four essential terminals (and their modems) will be :
- described here. Also, a special RS-232 cable was

is constructed which crossed the wires between pins #2 (RxD)

i; and #3 (TxD) on the connectors for both ends of the cable

2 and connected the #7 (GND) pins of both connectors

i: together.

ii For the purposes of this description, the four

;‘ terminals which were used will be referred tc as :

.ﬁ %3' TTY1l -- set to 300 baud with telephone modenm,

|
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. TTY12 -- set to 300 baud with Gandalf modenm,

T;‘ 7 TTY13 —- set to 9600 baud with Gandalf modem, and

;%; TTY1l4 -- set to 9600 baud with Gandalf modem.

- All four terminals were located in the terminals room (room
- 125) of the AFIT/EN building (buildling 640). All of the
o Gandalf modems were connected to the VAX on which the EPFE
.ﬁ' and Semantic Analyzer ran.

) TTYll was wused to «call into the DEC-10 computer and
;ﬁ initialize the Parser for operation. In addition, it was
EE necessary to turn off the echo of the input in order to
:; keep from sending the input back out the output channel
aé (reference the RS-232 special cable connection below).

§§5 TTY13 was brought up and 1left in the UNIX C-shell.
~ A‘D This terminal was used as a dummy input terminal for TTY1l2.

:% TTY12 was brought up. Its protocols were switched to
iﬂ the DEC-10 protocols. Its echo was then set to off for the
f same reason as outlined for TTY1ll above. The LISP

?ij interpreter was entered and the command:

e
5

' (setq piport (infile '/dev/ttyl3)) <cr>
Ly

%

f& was issued so that the shell which monitored this
2 terminal's input would not interfere with the input that

‘zé was coming from the DEC-10. The cables connecting the TTY1l

éé and TTY12 terminals to their respective modems were

Qf unplugged from the modem side. The special RS-232 cable was

i§ :i: then used to connect the modems for these two terminals

Dy
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Finally, the EPFE and Semantic Analyzer portions of

the SPEREXSYS were brought up with the "(load 'spxs)" LISP

RAAN 2
RPRORAD? 3 NI -

command on TTY14 which then functioned as the SPEREXSYS

NS

user's terminal,

i

The last thing to be done to complete the preparation

0of the entire implementation of the system was to send a

by "' .
PPy Rt TR R A

carriage return to TTY12., (This was done wusing a LISP

s |

command during SPEREXSYS intialization. The carriage return

s
[y

‘i of course did not go to TTY1l2. It went to the output 1line
‘f of the TTY12 modem which then went into the DEC-10 through
3 the input line of the TTY1ll modem). This had the effect of
'é loading a vertical bar into the input buffer for the TTY1l2
¥ ‘Ei modem to access. This was necessary to properly synchronize
:; the EPFE and English Parser I/0 channels because the EPFE
\ is programmed to ignore everything up to the first vertical
bar in the TTY12's input buffer (when it talks to the
i English Parser).
E Whenever the EPFE now wants to talk to the English
2 Parser, it wuses LISP commands to set its input and output
;‘ ports to TTY12. When it wants to talk to the SPEREXSYS
; user's terminal, it resets them to TTYl4.

A more detailed set-up procedure is described in the

user's manual in appendix C.
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B. Testing and Validation

Since the primary purpose of the SPEREXSYS was to
reduce ambiguity in the Voice Decoder's output, the testing
philosophy was to carefully choose test cases which helped

to measure the reduction of ambiguity due to imposing the

constraint that all voice decoder output must form.

grammatically correct sentences.

In order to assist in this task, the 200 words which
comprise the SPEREXSYS vocabulary were chosen so as to
maximize ambiguity. For example, the words "two","too", and
"to" were included because they sound identical even though
they have completely different syntactic and semantic
functions. Also, the words "peak" and "peek" (and "peaking"
and "peeking") were chosen because they sound identical and
have identical syntactic definitions. They can only be
distinguished at the semantic level. Some of the words in
the chosen vocabulary are fairly uncommon but were chosen
because they sound quite similar to other more common
words. The words "eunichs" and "units" are an example of
this.

If a vocabulary had been chosen to reflect a set of
words which have more common usage, there would be 1less
ambiguity. It was therefore thought that the problems which
would occur due to a vocabulary of a size significantly
larger than 200 words could be simulated by choosing a set

of 200 words with an wuncommonly frequent degree of
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ambiguity,

Two levels of testing were required. The first was to
verify that the program code functioned as anticipated
(i.e. - to insure that there were no coding bugs). This
testing was accomplished for the most part by the dynamic
path testing of modules as each major functional area was
written. This level of testing is not significant to the
evaluation of the SPEREXSYS design and, for that reason,
will not be discussed here.

The second 1level of testing was to evalute the
SPEREXSYS design. This level of testing was concerned with

answering such questions as:

1. How well does the SPEREXSYS handle identical
sounding word ambiguities?

2. How does the SPEREXSYS respond when the
correct word is not the highest probability
word?

3. How much do changes in the search depth and
acceptance threshold parameters affect the
performance of the system?

4, How well does the SPEREXSYS find the end of
sentences when the speaker is uttering
consecutive sentences without stopping?

5. How effective is the SPEREXSYS at assisting
the voice decoder to find correct word

boundaries in connected speech?
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6. How effective is the short term memory?

Rules of Testing

The test sentence was first diagrammed by dividiing it

into phonemes on a time scale. The sentence "The peak got

snow," is so diagrammed in this example:

5 (0) TH (5) E (15) P (20) EA (30) KG (35) O (45) T (50) S
AN
s (55) N (60) O (70) FPUNCT (100).

The numbers in parentheses are Seelandt <clock times. They

iés mark the times of phoneme transition. The consonant
o qt, phonemes are assigned a duration of five Seelandt time
:f units. The vowel phonemes are assigned a duration of ten
E;: Seelandt time wunits. This was an arbitrary assignment
X scheme and is not significant other than it is a rough

. approximation of actual phoneme durations in normel speech.
tﬁ When it was possible to combine the terminal phoneme of one
s word with the initial phoneme of another word, it was done.
3; For example, "peak" and "got" above, both share a common
jé; phoneme that sounds like the letter "g."

N When the Voice Decoder is given the approximate time
%: of the start of a next word, it may look back at most only
5- one phoneme to begin looking for the start of the next

word. The one exception to this is when the previous two

e phonemes were "s" and "t" such as at the end of the words

PRIV W,
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T? ~ "mast" or "missed." For example, when the words "missed
" RS

;} i stair" are pronounced in connected speech the "st" sounds
]ﬁ may occur only once and be shared by both words.

:3 When it was possible to insert bogus phonemes, they
A were inserted. An example of this is the pronunciation of
{i the two words "go on." "Go" does not end with a "w" sound
iz and "on" does not begin with a "w" sound, but when the two
= words are spoken together, a "w" sound occurs in the
o transition between the "o" in "go" and the "o" in "on."

?; The last rule is that no phonemes can be 3ignored from
i; the start-word time given by the EPFE and the actual start
5} of the word used by the voice decoder (with the exception
EE of periods of silence - - FPUNCTS).

"

A

. -
. -..:Jfa_.l.'sl.-

Test Number One

[y
.

Purpose of Test: The purposes of this test are to

examine the ability of the SPEREXSYS to:

= 1. Interpret a short single sentence.
E; 2. Find word boundaries even wher the boundary is
Eg' a shared phonenme.
:f 3. Respond accurately even when a wrong word is
E: entered with a  higher probability of
ji likelihood than the correct word.
}ﬂ 4, Distinguish between words with identical sound
ia ;;f and identical syntactic definitions.
&
o

' 80
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Test Specification: The sentence, "The peak got snow,"

P

will be dinput. The terminal phoneme of "peak"

and the initial phoneme of "got" will be a

", n

shared

g sound. The words "peak" and "peek" '

will both be entered with identical
probabilities of likelihood for the word
"peak." The word "no" will be entered with a '
higher probability of likelihood than the word
"snow" for the 1last word in the sentence.
Acceptthresh and searchdepth will be entered “

as .75 and 2 respectively.

I Input Utterance: (0) TH (5) E (15) P (20) EA (30) G

ASEER.

(35) 6 (45) T (50) S (55) N (60) 0 (70) FPUNCT
(100).

Test Observations: The test observations are included

in their entirety in appendix C.

Test Results and Conclusions:

PPN DY TP B W

1., The SPEREXSYS was able to properly interpret
this sentence on the first attempt even
with the ambiguities. :

2., For this example, the SPEREXSYS was able to

find the word boundaries between all four i

81
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. words in the sentence even though the Voice

DAy

Decoder was unable to do so.

3. Because of the syntactic constraint that

e 4e

¥ does not allow the four words, "The peak

! got no," to be a complete sentence, the

2 fact that the word "no" was entered with a

higher probability of 1likelihood than the

: correct word "snow" did not cause the

§ SPEREXSYS to fail to find the proper

% sentence ' as its first choice. Similar

b successful results would not be expected if

j a wrong word was given a higher probabiltiy i
; of likelihood by the Voice Decoder if it i
d 0 fit syntactically into the sentence. é

4. The Voice Decoder was unable to distinguish g

J between the two nouns "peek" and "peak." ?
” The SPEREXSYS was unable to help in this -
_t ambiguity. This was expected because \
E . semantic information is necessary to make

- ] this decision. Acoustics and syntax are

. insufficient to make the proper distinction F
2 between the two words. The reason "The peak -
- got snow" was output before "The peek got

;3 snow" was due only to the fact that "peak"

,3 was entered before "peek." E
N

3 : Test Number Two

.

- 82
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St
o Purpose of Test: The purposes of this test are to
examine the ability of the SPEREXSYS to:
1. Find the end of sentences when the speaker
is uttering consecutive sentences without
stopping. (To make this test particularly
difficult, no sentential pause will be
inserted between the sentences).
2. Respond to improperly interpreted sentences.
3. Demonstrate improved performance with the
use of the short term memory.
0 Test Specification: This test will be administered in
three parts:
Part I: Input the sentence , "Your error was wrong."
The word "air" will have higher probability of likelihood
than the word "error."’
Part II: The sentence is expected to fail the first
time through the SPEREXSYS for reasons outlined in part 3
of the "Results and Conclusions" to test number one.
Simulate a better pronunciation of the word "error" the
second time through by giving it a higher probability of
likelihood than  "air." All other inputs will remain
A

identical to the first test.

...........
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~ Part III: Properly input the sentence, "Their error
f: was right," by inputting only the correct words each with a
;5 probability of likelihood of 90%Z. After the word "right" is
-‘:\
] entered, input the sentence in part I ("Your error was
N wrong.") without inputting an FPUNCT (sentential pause)
'._\:
?} after the word "right" in the first sentence. (This gets
Y the word "error" in the short term memory.) The sentence,
_;i "Your error was wrong," should be entered exactly as it was
b~
-f: the first time in part I (only the times will be shifted so
]
o
- that it will start after the word "right" in the first
;ﬁ sentence). Acceptthresh and searchdepth should be set at
"

:4 .75 and 2 respectively for all parts of this test.

*,
:; Input Utterances:

vf.: - (V)
- Part I: (0) Y (5) O (15) R (20) E (30) R (35) W (40) A
¢ v
) (50) Z (55) R (60) O (70) N (75) G (80) FPUNCT (110).
I o - 4 -
ia Part II: (0) Y (5) O (15) R (20) E (30) R (35) O (45)
] v .
A R (50) W (55) A (65) z (70) R (75) O (85) N (90) G (95)
>
FPUNCT (125).

e v v
b Part III: (O) TH (5) E (15) R (20) E (30) R (35) W
e

.f | V) ~— -
E;j (40) A (50) Z (55) R (60) O (70) E (80) T (85) Y (90) O
A v
= (100) R (105) E (115) R (120) W (125) A (135) 2Z (140) R

v

& (145) 0 (155) N (160) G (165) FPUNCT (195).
Y2

]
N
Nl Test Observations:
:% Y 1. The SPEREXSYS failed to recognize the
J'\l
0‘:":

4
- 84

3
=8




|7 > L
ot e

| Pttty

Y yyyXy

ALEL

AN

«
-~

AAAA:

i

o d
¥

Test Results and Conclusions:

1. The sentence, "Your error was wrong," fail

S AL iaes Al it AR DA v e e it e R vl 4 KSR A L Al e

sentence on the first attempt in part II.

sentence in part I.

The SPEREXSYS properly recognized the

The SPEREXSYS properly recognized the

sentence on the first attempt in part III.

as expected the first time through because
"air" was thought to be the correct word by
the SPEREXSYS. Note that even perfect
semantics at the sentence 1level would not
have helped to find the correct word since
the sentence, "Your air was wrong," is a
sentence which is semantically correct all
by itself. Semantics at a conversational
level would be needed to determine which
word made more sense within the scope of
the conversation.

The first sentence was properly interpreted,

as would have been expected, after the user

followed the instructions of the SPEREXSYS
to pronounce the word more clearly the
second time.

In part III of this test, the end of the

sentence was found after the next 2 words
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had been 1looked at. It would have been
discovered by looking at only the next word
if acceptthresh had been set to anything
between .83 and .9. If acceptthresh had
been very low (around .2), it may have been
that the end of the first sentence would
not have been found. This 1leads to the
conclusion that acceptthresh should be set
as high as possible without eliminating the
correct words,

4. The use of the short term memory, in part
IIT, prevented the occurrence of the
misinterpretation which happened4 in part I

of this test.

Test Number Three

Purpose of Test: The purposes of this test are to

examine the ability of the SPEREXSYS to:

1, Distinguish between 1long and short words
with the same probabilities for the next
word in the string.

2. Properly interpret paragraphs constructed
out of long sentences uttered without
stopping at the end of each sentence to

insure the SPEREXSYS properly interpreted

it.

- v =
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3; Test Specification: The following paragraph will be
s uttered into the (simulated) Voice Decoder:

2 The Airforce general was speaking to his

ﬁi staff about some recent C3 issues. He told

- us that there was nothing ambiguous about

‘; the intelligence report. The Army MI people

i; and our own intel folks all agree. The

- enemy is running short on ammunition. We
252 must have the communications to get this
&% information out to all our units.

- If the SPEREXSYS allows it, the words "Air Force" will be
:ig used as equal probability candidates for the word
;& "Airforce." Similarly, the following sets will be used as
\

= gjb equal probability candidates for the correct word:

§§ sea cubed -- C3

= see cubed -- C3

3; itch ewes ~- issues

EE ’ am big you us -- ambiguous

: reap port -- report

;a arm me —- army

.

- These are only a few of the equal probability and near
Ei equal probability words which are to be entered along with
;; the correct words. Acceptthresh and searchdepth will be set
- to .75 and 2 respectively.
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Input Utterances: (0) TH (5) E (15) B (25) R (30) F
(35) O (45) R (50) S (55) G (60) E (70) N (75) R (80) A
(90) L (95) W (100) A (110) Z (115) P (120) E (130) K (135)
E (145) N (150) G (155) T (160) O (170) H (175) I (185) Z
(190) T (195) X (205) F (210) A (220) B (225) OU (235) T
(240) S (245) O (255) M (260) R (265) E (275) C (280) E
(290) N (295) T (300) FPUNCT (330) C (335) K (340) T (350)
B (355) D (360) I (370) SH (375) U (385) Z (390) FPUNCT
(420) H (425) E (435) T (440) O (450) L (455) D (460) U
(470) S (475) TH (480) E (490) R (495) W (500) A (510) Z
(515) N (520) O (530) TH (535) E (545) N (550) G (555) &
(565) M (570) B (575) I (585) G (590) Y (600) U (610) W
(615) U (625) S (630) A (640) B (645) OU (655) T (660) TH
(665) E (675) I (685) N (690) T (695) E (705) L (710) T
(720) G (725) E (735) N (740) S (745) R (750) E (760) P
(765) O (775) R (780) T (785) FPUNCT (815) TH (820) E (830)
0 (840) R (845) M (850) E (860) E (870) M (875) O (885) E
(895) P (900) E (910) P (915) U (925) L (930) & (940) N
(945) D (950) O (960) R (965) O (975) N (980) I (990) N
(995) T 71000) E (1010) L (1015) F (1020) © (1030) K (1035)
S (1040) 0 (1050) L (1055) A (1065) G (1070) R (1075) E
(1085) FPUNCT (1115) TH (1120) E (1130) Y (1135) E (1145) N
(1150) E (1160) M (1165) E (1175) Y (1185) z (1190) R
(1195) U (1205) N (1210) E (1220) N (1225) G (1230) SH
(1235) O (1245) R (1250) T (1255) O (1265) N (1270) &
(1280) M (1285) Y (1295) U (1305) N (1310) 1 (1320) SH
(1325) U (1335) N (1340) FPUNCT (1370) W (1375) E (1385) M

88
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(1545) S (1550) U (1560) N (1565) Zz (1570) T (1575)
(1585) G (1590) E (1600) T (1605) TH (1610) T (1620)
(1625) I (1635) N (1640) F (1645) O (1655) R (1660)
(1665) A (1675) SH (1680) U (1690) N (1695) OU (1705)
(1710) T (1720) W (1725) 0 (1735) L (1740) O (1750)
(1755) Y (1760) U (1770) N (1775) I (1785) T (1790)
(1795) FPUNCT (1825).

Test Observations:

l. When the correct word was not the word with
the highest 1likelihood for any word other
than one of the last three words in the
sentence, then the SPEREXSYS failed to
properly interpret the sentence on the
first attempt.

2. Eventually (see appendix B), all of the
sentences in this paragraph were properly

interpreted,

Test Results and Conclusions:
1. The 4introduction of the similar sounding
word sets (prescribed in the Test
Specification above) did not <cause the

SPEREXSYS to fail to properly identify the

(1390) U (1400) S (1405) T (1410) FPUNCT (1440) H (1445) &
(1455) V (1460) TH (1465) E (1475) C (1480) O (1490)
(1495) Y (1505) T (1515) N (1520) I (1530) C (1535) A
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correct sentences. In some instances, (i.e.
- the substitution of all four words "am
big you us" for "ambiguous" was not allowed
due to syntactic constraint).

Essentially, the SPEREXSYS is making a
decision on the third word back from the
end of all strings. This is (by design) the
nature of the deterministic decision making
process in the SPEREXSYS. Semantic analysis
during string construction is not yet
employed in the SPEREXSYS. Acoustics and
syntax are sometimes insufficient to find
the correct identity of this third word
back from the end of all strings. The
result is that if the «correct third word
back does not have the highest word
likelihood probability by the time it has
been run through the short term memory and
the longer word preference modules, it will
be rejected. When this happens, the only
recourse left to the SPEREXSYS is to ask
the user to repeat the sentence and hope
for better results on the next attempt.
This inconvenience emphasizes the need for
semantic analysis which has the effect of
boosting the word probability of the

correct word above all other word
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; probabilities. This must be done during the '
o S ;
o N MARKEDECISION  module function in the :‘

;5 SPEREXSYS (i.e. - ©before the third words

back go into the module to kill low

)
.
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probability strings).
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V. Summary, Conclusions, and Recommendations

Subject to the accuracy of the acoustic analyzer and
the accuracy and completeness of the English Parser, a near
real time general solution to the application of syntactic
constraints to spoken English recognition has been
developed. This solution is functionally equivalent, in
many ways, to the syntax processing of spoken English in
the human brain. Because it closely models the syntax
processing of the Human Speech Recognition System (HSRS),
it would be most effective when wused with the several
levels of semantic analysis which are also evidently
operational in the HSRS. Hence, it is a necessary part of
the eventual general solution to the English speech

recognition problem.

A, Summary and Conclusions

The purpose of this thesis was to find and develop a
way to interface the Milne English Parser with the AFIT
Voice Decoder so that the accuracy of the Voice Decoder
would be improved by the additional constraint of requiring
its output to form grammatically (syntactically) correct
English sentences. It was thought that by so constraining
the output of the Voice Decoder that additional information
would be provided to help resolve Voice Decoder ambiguities

such as finding word ©boundaries in connected speech and

92
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choosing between identical sounding words (such as "to",
"too" and "two"). These ambiguities exist in that there is
insufficient information in the acoustic data alone to
resolve them, In addition, it was hoped that the
application of these syntactic constraints might prove
useful in the process of distinguishing between
approximately likely options available to the Voice Decoder
during its final decision making of the analysis of the
input utterance. Contingent on the successful development

of a solution to the above stated requirements, this thesis

was to measure the degree of success achieved in each of
the aforementioned requirements. In accomplishing all of
these, it was desirable to investigate and develop a Voice
Decoder - English Parser interface which functions
similarly to the same acoustic analyzer - syntactic
analyzer interface in the Human Speech Recognition System
(HSRS).

All of this was accomplished. Some of the qualitative

specifics of these accomplishments are discussed below:

1. The solution to this problem for the most part
addresses the syntax aspects of the spoken English

recognition problem. It 4dincludes some crude semantic

analysis to help resolve some ambiguities 1left unresolved

TR
0

N
b

by the syntactic analysis. The solution is <called the
Spoken English Recognition Expert System (SPEREXSYS). Aside

from the human interface aspects of operation (which were

RN
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due to implementation constraints) it is a8 near real time
solution. It can be easily implemented as a real time
solution by upgrading the hardware and communications with
existing technology.

2. The SPEREXSYS was designed and developed to black
box the type of acoustic analyzer (voice decoder) which 1is
used. In other words, the SPEREXSYS operates independently
from the type and design of the voice decoder (the voice
decoder can be isolated or connected word, small or large
vocabulary, any type of feature set extraction, any bit
rate, any kind of word recognition scheme) as long as the

voice decoder has the following attributes:

a. It can remember the input utterance.

b. It can determine the acoustic 1likelikhood of
match of words in the vocabulary which might
be the next word in the input string
beginning at or around some specified time
in the input utterance. .

c. It can determine the start and stop times of

every word which it determines to be a

likely match,.

3. It has been demonstrated that the solution to the
problem of syntactically constraining acoustically analyzed

speech must be deterministic in nature (meaning that it

makes decisions one word at a time from left to right

— . S T A R s i e
T s gt it A St e et PR AR CR A A LR i



without ever backtracking and with 1limited 1lookahead) in
both electronic computers and the human brain. The
SPEREXSYS is able to function psychologically equivalent to
the syntactic analysis processing of the human brain. It
also predicts the point at which semantic constraints
should be introduced in order to maintain psychological
compatibility with the semantic processes in the human
brain. This was done by using the one buffer lookahead
theory developed by Milne (Ref 17). It was decided to rely
on the one buffer lookahead technique in order to assign
syntactic functions to each word being considered, but that
because of the increased confusion in speech (compared to
written English) as to the location of word boundaries, it
was decided to allow two buffers of 1lookahead before
allowing for semantics to be introduced. This was thought
to improve the probability of finding the right word before
making a final decision as to the selection of a word based
on semantics. It was also demonstrated that this final word
selection (from the high probability options) must be made
on the basis of semantics. In the SPEREXSYS, the final word
selection should occur at the third word back from the end

of a string under construction and also for the last two

words in a sentence.

4, The SPEREXSYS incorporated functions which
simulated the psychological functions (in the HSRS) of
short term memory and longer word preference. More

experimentation with the HSRS needs to be done in order to
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more accurately describe (and apply in the SPEREXSYS) these
functions.

5. The SPEREXSYS <can find word boundaries, which the
voice decoder cannot find, even when it is a shared phoneme
(or set of phonemes) as 1long as the acoustic analyzer
(voice decoder) is accurate enough to provide the right
ansver as one of the top few options and the English syntax
is sufficient to resolve the ambiguities. Syntax was
sufficient in most cases (during the testing of the
SPEREXSYS), but in many others, semantics was necessary to
resolve word boundary ambiguities.

6. The SPEREXSYS <can distinguish between identically
sounding words as 1long as the words have different
syntactic functions. More specifically, the homonymns and
crossonyms (identical sounding strings of phonemes) which
are eliminated must form syntactically illegal or
improbable strings. Semantics 1is required to distinguish
between homonymns which have identical syntactic functions.

7. In the instances where the correct word was not
identified as the most likely word by the voice decoder,
the SPEREXSYS was able to choose the correct word if the
words which were identified by the voice decoder as more
likely words either did not fit syntactically in the
sentence or led to improbable string constructions. This
decision was much more likely to be made correctly if the
voice decoder mistake was made within the last three words

of a sentence (because syntactic constraints are much more
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8. When the SPEREXSYS fails to properly interpret a

sentence in its first attempt, it will output its best

guess (sentence) and ask the user to repeat the sentence

particular attention to the pronunciation of the

paying

words which were improperly interpretted the first time.

The second attempt is usually more successful than the

first.

9. The SPEREXSYS is able to properly interpret several

sentences which are uttered in continuum without the user

having to stop in between sentences to insure that the last

sentence was properly interpretted.

10. The wuse of the short term memory which was

modelled into the SPEREXSYS was helpful in increasing the

accuracy of the SPEREXSYS in those instances when the wrong

choice would have been made had it not been that the

correct word was spoken in a previous sentence.

11, One of the user initialized (and program

adjustable) variables which was the acceptance threshold

(acceptthresh) should be set as high as possible without

interfering with the selection of the <correct words. This

variable is useful in determining where the end of

sentences are. The higher its value is, the earlier that

determination can be properly made.
12, In addition to some of the above mentioned methods
decoder, the

for increasing the effectiveness of the voice

SPEREXSYS 4improves

the reliability of the voice decoder by

LT N SO
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:}2 2 reducing the size of the vocabulary it has to search. This

}}? e is done by applying the syntactic constraints to the next

f?’ word in a string before the input utterance is analyzed and

é% word options are considered (in the voice decoder). This

f3 has the effect of reducing the vocabulary size of possible

f;a words. Since the reliability of a voice decoder is related

%ﬁ to its vocabulary size, this vocabulary reduction results

A in improved voice decoder reliability.

ﬁ% 13. Although the SPEREXSYS is often forgiving if the

;& correct word is not always the word chosen as most 1likely
?ﬁ by the voice decoder, the SPEREXSYS is highly reliant on

ﬁﬁ the voice decoder choosing the correct word as the most
ig likely word most of the time.

Rt o

P B. Recommended Improvements and Enhancements

"t

2

' The following are areas which need to be improved,

2§ rethought, further researched, or enhanced:

&% 1. More research needs to be done on the behavior, and
- effect of, the short term memory in the HSRS. The impact of

:3; the short term memory probably decreases with time perhaps

:g with respect to the 1logarithm of the time since the

2 utterance. It may favor certain types of words such as

Eﬁ uncommon words, longer words, nouns and verbs,etc. It may

)

be able to be influenced by semantics. These are things

@,
NIy

that need to be investigated and the results incorpo-ated

g 3
)
Ehat I

AR into the SPEREXSYS.
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2. The phenomenon of favoring longer words over

shorter words was the result of experimentation. This

researcher is not convinced that the data gathered from
these experiments conclusively demonstrate that this
phenomenon is active in the manner in which it has been

interpreted and applied in this thesis. More research needs

to be done in this area.

3. After much rethinking of the basic assumptions that
lead to the use of a two word buffer lookahead in this
thesis, it appears that if semantics can be incorporated
during string construction (and it should be) then only a
one word buffer lookahead should be used. As it currently
stands, the two word lookahead 4interferes with the
mechanism that prefers longer words over shorter words.

4. The dynamic readjustment of the two variables
searchdepth and acceptthresh should be further studied. If
acceptthresh is dynamically readjusted, it should be
adjusted based on the current track record of correct word
likelihoods, not on a blind incrementing and decrementing
algorithm. If searchdepth 1is readjusted, it may also be
desirable to increase the number of buffers of lookahead.

This recommendation may be withdrawn when semantic analysis

during string construction becomes available.
5. The English Parser should be put on the VAX (as
vell as the voice decoder when it is ready) in order to

eliminate the time consuming communications across a low

speed modem link,
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6. The current translation of English Parser feature
types into a vocabulary list of possible npext words from
which the voice decoder <can choose is a very inefficient
and time consuming process. This process could perhaps be
speeded up by the following:

a. Do a front end elimination of illegal feature
types.

b. Do a check and elimination for reduntantly
specified types.

c¢. Use parallel searching and processing of the
translation of legal types into vocabulary

lists.

7. Appendix D outlines a theory on the way the HSRS
searches for best word matches which would eliminate the
need for the entire function discussed in number 6 above.

8. When a real voice decoder is eventually hooked up
to the front end of the SPEREXSYS, use a vocabulary size
small enough to ensure that the correct word is the most

likely word most of the time.

C. Possible Future Extensions of This Work

The syntactic constraint of the voice decoder's output is a
critically important function the speech recognition
process. But it 1is quite <clear that syntax alone 1is

inadequate to constrain the output of the voice decoder so
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that general English speech recognition can be

accomplished. Several levels of semantic analysis have been

oV

suggested in this thesis. At least intra-sentential
semantics must be developed and integrated into the
SPEREXSYS. J

Beyond that, an entire hierarchical system which is
modelled after the HSRS needs to be developed. The
SPEREXSYS might be useful (although this is not suggested
by the discussion in appendix D) as the syntax analyzer in
such a system since it behaves in a psychologically similar

fashion to the HSRS.
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;*%* SYSTEM FUNCTIONS DEFINED BY FRANZ LISP NOT IN FRANZ LISP e***

\dedare {macrus t))

O = GANONOS A
oo PR
(A DA R

. (defun max (alist)
o (prog ()
(retum (maxe! alist 0]
Sl 7 (defun maxel (alist n)
(cond
by {(null alist) n)
.~ (t (cond
((greaterp (car alist) n)(maxel (cdr alist)

(car alist)))
(t (maxel (odr alist) n)

— ;*** GENERAL PURPOSE, GENERAL USE FUNCTIONS ¢**

(defun printstglst (remstg)
(cond
((null remstg) 1)
(t (terpr)(printstring (cdar remstg) )(printstglst (codr remstg]
;odar remstg = words of first string
;ie- "(the (0 15) .95)' is a word

- ’
’ ‘" c' L, N, .,
L

::. {defun printstring (remstg)
~3 (cond
o ((null remstg) nil)
Pt @ ((equal (cear remstg) *fpundt)(princ °|})
: (t (princ ’| )(print {cear remstg))(printstring (cdr remstg]
- ;ceer remstg = word.dict
A ; e~ 'the’ is a word dict

;** THISIS SPEREXSYS - THE SPOKEN ENGLISH RECOGNITION EXPERT SYSTEM ****

»

1

v
)
AR AR

l“

e

Qe

3

Ry (defun spxsinit () ; mod 1 - called by sperexsys - initializes the sperexsys
e H system.
53 (prog ()
DS, (terpr)(terpr)(terpr)(terpr)(terpr)(terpr)(terpr)
s (princ *P 9
.':\ (tﬂp') .
oo (princ 'Pee 9
o (terpr)
"o (princ 'P** W elcome to the SPoken English Recognition EXpert SYStem  **9)
o . (terpr)
-7 o (princ ‘J** (SPEREXSYS) vee
o : (terpr)
- (princ ‘Pe* *9
“.c (W) - N
N {princ 'P P

:
-
-

~ -
N
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(terpr) (terpr) (terpr)( terpr) (terpr)(terpr)
(princ ' Please ready the M ilne English Parser and the AFIT A coustic analyzer.)
(terpr)
(princ 'MW hen they have been readied, input the device I.D. of the )(terpr)
(princ 'English Parser. It should be of the following form: /dev Atyi7 )
(terpr) (terpr) (terpr) (terpr)(terpr) (princ 'b> )
(setq epoutport (read ' epoutport))
(setq epoutport (outfile epoutport 'a)) ; cpen output port to DEC-10
(terpr epoutport) ; this puts a vertical bar in the ep’s output buffer.
; it is necessary in order te properly trigger the reading
; of the eprespornise the first time.
(terpr) (terpr) (terpr)( terpr) (terpr)(terpr)(terpr)
(terpr)(terpr) (terpr) ( terpr)( terpr)( terpr)( terpr) ]

’
’
.
’

(defun global (i s m tim) ;mod 2.2.1 - called by epfe - initializes global vbls

(prog )
(load 'vocdict) ; all the features (grammar types) defined
; &s a set of vocabulary words

(load "dictspxs) ; list of legal & illegal featured
(setq inittime tim) ; start time for a sentence
(setq topchoicenum i) ; same as searchdepth in semanalyzer

(setq numstrings (times ii)) ; number of strings allowed
; to be active in eple

(setq minaccept (times m 3)) ; 3 times the value of
; acceptthresh

(setq init 1) ; if = 1, then this is the first time through
; for this sentence

(setq mexwordtim 200) ; approximate time it takes to pronounce
; longest English word

(setq maxstnums) ; number of last used stringnum

(setq nxgslst ")) ; epfe’s request to voice decoder for
; next word in strings

(setq optstglst '()) ; temporary stringlist value
(setq optstg '()) ; used in mods 22.2.1.1 & 2.22.1.1.1
(setq stringlist '()) : the list of active strings

(setq wordgslst ‘() ; voice decoder’s response to epfe’s
; request for next words
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~ (setq epresist *()) ; English Parser response list

(setq topwordlst *'()) ; list of top searchdepth words for
o ; every active string
(setq optsesist '()) ; temporary variable used in manipulating
; sentstist

(setq sentstlst ()] ; sentence string list (epfe's response
; to the semantic analyzer)

(defun elim (stgnum stgist) ; mod 2.2.2.1.1.1 - called by lookatnext? -

; eliminates nil epresponses
; from epresponselist &
: eliminates corresponding string
; from stringlist
(cond
((null stgist)(print *(errOr in elim)))

((eq (cear stglst) stgnum)
;oear siglst = string number of first string in stringlist
(setq optstg (append optstg (cdr stglst))))
(t (setq optstg (cons (car stglst)(elim stgnum (cdr stglst]

ﬁ {defun lookatnext2 (epres) ; mod 2.2.2.1.1 - called by kilnilsts - idents nil
: q:»rsponss&caﬂselun

((or (equal (odr epres) *(nil))(null (cdr epres)))
(setq optstg *()){elim (car epres) epresist)
;optstg used for building new epresist without
;the nil
(setq epresist opistg)(setq optstg *())
(elim (cer epres) stringlist)(setq stringlist optstg]
;here optstg used for building new stringlist
; without strings that have corresponding nils
;in epredst

(cond

(defun kilnilsts (remstg) ; mod 2.2.2.1 - celled by formnxgs - eliminates
; strings from stringlist if correspond-
H ing epresponse is nil

((null (cer remstg)) t)
(t (lookatnext2 ( car rernstg) ) (kilnilsts (odr remstg]
;car remstg = first epres in remstg

(cond

(defun checkfpun (next2) ; mod 2.2.2.2.1.1 - celled by examnext2 - looks for
; fpundts in epres
) (cond
((null next2) nil)
;next? is a list of a list of features in an epresponse
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((equal (car next2) *(fpurc)) t)
(t (cheddpun (cdr next?]

(defun addtosestls (stglst stgnum) ; mod 2.2.2.2.1.2 - called by exarmnext2 -
; adds strirgs to sertstlst

; which have fpunct in
; corresponding epres
(cond
((null stglst) (princ 'Error in addtosessts))
((equal (caar stglst) stgnum) ; found string which matches
; epresist for fpunc
(setq sentstlst (cons (car stglst) sertstist)))
; so add it to sentstist
(t (addtosestls (odr stglst) stgnum)

(defun examnext? (epres) ; mod 2.2.2.2.1 - called by fpundproc - adds strings
: to sentstringlist when fpuncts are
; found in epreslst for that string
(cond
((chedkfpun (cdr epres)){addtosestls stringlist (car epres]
;odr epres = next2 = list of list of features from
; English Parser

(defun fpunctproc (remstg) zmd 2.22.2 - called by formmxgs - iteratively
strips epres’s fmrn.epmlst
(cond ; remstg = epmslst first time in
'(nall (cer remstg)) ¥
(t (exarmrmext2 (car remstg)) (fpunctproc (odr remstg]
;car remstg is a complete epresponse for the
;with the string number = caar remstg

(defun gettim] (words) ; mod 2.2.2.3.1.2.1 - called by findtim] - returns
; tim?2 for the last word in string
(cond
((null (cdr words)){cedadar words)) ; if last word in string,
; return the termination
; time for that word

; (im?)

(t (gettim! (cdr words]

(defun trenslate (typen) ; mod 2.2.2.3.1.1.1 - called by getnextl - translates
; perser’s forms of types to voice
: decoder’s forms of types
(prog ()

(cond ((equal typen ‘(fpunct)) nil) ; take out '[fpunc],
((equal typen '(fpunc)) nil) ; '[all], and *{t}
{(equal typen ’(t)) nil) ; responses from
((equal typen *(all)) nil)  ; epresponses

(t (retumn typen]
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(defun getnextl (stgnum next2) ; mod 2.2.2.3.1.1 - called by buildrxgs -

i makes list of types (next1)
H to be part of nextguess
{cond
ggnull next2) ‘())
(setq type (transate (car next2)))

{cond
((equal type (1)) "((all))) : this is here for
; future use when epfe won't be
; ignoring ‘[t]’
{type (cons type (getnext1 stgnum (cdr next2))))
(t (getnextl stgnur {cdr next2] ; these two lines are
; building translated next2
; (now called next1)

(defun findtim1 (stgnum stglst) ; mod 2.2.2.3.1.2 - called by buildnxgs -

; finds string in stringnum
; which matches stgnum and
. calls gettim1

(cond
((nult stglst)(terpr)(princ ’Error in findtim1 )
(princ "br epres was nil for stgnum ) (print stgnum))
((equal (cear stglst) stgnum)(gettim1 (odar stglst)))
;caar stglst = string number codar stglst = words
(t (findtim1 stgnum (cdr stglst)

(defun buildnxgs (stgnum next2) ; mod 2.2.2.3.1 - called by makenxgsist -
: builds next-guesses and adds
themn to nextgsist
(prog (type)
(cond ((nul next?) (retum t)))
(setq next1 (getnext! stgnum next2))
(setq tim1 (findtim1 stgnum stringlist))
(setq nxgslst (cons (cons stgnum (cons tim1 next1)) nxgslst]
; now adds new nxgs to nxgsist
; form of nxgs is '(stgnum tim1 (feature set))’

(defun makenxgsist (remstg) ; mod 2.2.2.3 - called by formnxgs - makes

: next-guess-list for output to
; voice decoder. Iteratively strips
: epres's off of epreslst

(cond
((rmull remstg) t) ; remstg = epreslst first time in
(t (setq next1 '())(buildnxgs (caar rerrstg)(cdar remstg))
3 string number words
( makenxgslst (cdr remstg]

(defun formmxgs () ; mod 2.2.2 - called by epfe - forms next-guess-list
; (which is output to voice decoder).

(prog ()




'-:'f:::: (cond (init (setq nxgsist (list (cons maxstnum (cons inittime

"((an))))
(+ 1 maxstnum)(setq stringlist (cons (list maxstnum)
stringlist) ))
(t (kilnilsts epreslst)
(fpunctproc epresist)
(makenxgsist epresist)))
(terpr)(terpr) (princPn exiting formnxgs: nxgslst = )
(print nxgsist)(terpr]

(defun union? (alist blist) ; mod 2.2.3.1.1.1.1 - called by procfeatterm -
: perfortns set union of two
lists
(cond
((null alist) blist)
((member (car alist) blist)(union2 (cdr alist) blist))
(t (cons (car alist)(union2 (cdr alist) blist]

(defun intersect2 (alist blist) ; mod 22.3.1.1.1.2 - called by procfeatterm
; - performs set intersect
: of two lists
(cond
((null alist) *())
({member (car alist) blist)
(cons (car alist)(intersect2 (cdr alist) blist)))
(t (intersect2 (odr alist) blist)]

(defun compliment (universe nlist) ; mod 2.2.3.1.1.1.3 - celled by
: prodfeatterm - performs the set
; compliment of nlist in the
; given universe
(cond
((null universe) *())
((member (cer universe) nlist)
(compliment (odr universe) nlist))
(t (cons (car universe)(compliment (cdr universe) nlist]

(defun prodfestterm (featterm) rmd 2.231.1.1 - called by getwordopt -
interprets feature terms
; into word options from
; which the voice decoder
; can choose

(cond
{(null (odr feetterm)) ; featterm is a list of a single feature
(cond
((member (cer featterm) notfeatset) '())
(t (eval (car featterm)))))
((equal (cadr featterm) ‘or) ; featterm is of form '{feature or -)’

-
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(cond
((atomn (caddr featterm))
(unicn? (procfeatierm (list {car featterm)))
(procfeatierm (cddr feattenm))))
((not (equal (caddr featterm) 'rot))
(uniocn? (predfeatterm (list {car featterm)))
(prodfeat’ e {caddr featterm))))
((atom (cedddr featicrm))
(unicn? (precfeatiorm (list (car featterm)))
(cormplirment all (procfeatterm (cdddr featterm
m)
(t (union?2 (prodfeatterm (list (car featterm)))
(cormpliment all (procfeatterm (cadddr featterm
D)
({equal (cedr featterm) 'and) :featterm is of form "(feature and -)’
{cond
({atom (caddr featterm))
(intersedt2 {prodfeatterm (list (car featterm)))
(prodfeatterm (cddr featterm))))
{{not (equal {caddr featterm) 'not))
(intersedt2 (prodeatterm (list (car featterm)))
{prucfeatterm (caddr featterm))))
((atom (cadddr featterm))
(intersect? (prodeatterm (list (car featterm)))
(compliment all {procfeatterm (cdddr featterm
)
(t (intersect2 (procfeatterm (list (car featterm)))
(complimert all (procfeatterm (cadddr featterm
N
({equal (cer featterm) 'not) ; the part of the previous featterm
; of the form ‘(not -)'
(cond
((etom (cadr featterm))
{compliment all (procfeatterm (cdr featierm))))
(t (compliment all (procfeatterm (cadr featterm))))))
(t (terpr) (princ *Error in procfeatterm: ) (terpr)(princ’| )
(print featterm)
(princ '}is not a legal feature-type from the Parser) '()]

(defun getwordopts (featlist) ; mod 2.2.3.1.1 - called by printwordopts -
; functions as a driver for
; the feature list interpreter
{cond
((null featiist) '()) ; featlist = nextl first time in
(t (union2 (prodeatterm (car featlist))
;car = first feature in feathst
(getwordopts (cdr featlist))]

(defun printwords (wordopts) ; mod 2.2.3.1.2 - called by printwordopts -

: prints word options out to
; user (11 per line)
(prog (n)
loopouter
(setqn 11)
(terpr)
Joopinner
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((null wordopts){return t))
(t (princ | )(print (car wordopts))
; first word in wordopts is printed
(setq wordopts (odr wordopts))(setq n (subl n))
; the rest of the words are sent back
; through again
{setq wordoount (add1 wordcount))
{cond
((plusp n){go loopirner)) ; if 11 words have been
; printed on this line, start
; another line
(t (go loopouter)))]

(defun printwordopts (epresponse) ; mod 2.2.3.1 - called by intefvocdec -
; functions as a driver for

: the user’s listing of the
; words from which the voice

decoder can choose
(cond
((null epresponse)(terpr)(terpr)(princ ‘Error: In printwordopts))
(t (terpr)terpe)
(princ’|
(terpr)
(princ 'Possible words for voice decoder to choose from are:)
(terpr){cond

((equal (caaddr epresponse) 'all){princ ‘ALL W ORDS))

{t (setq wordcount 0) ; initialize wordcount which
; is incremented every time a
; word is printed in printwords
(printwords (getwordopts (cddr epresponse)))
;oddr epresponse = nextl
(terpr)(terpr)

(princ’] TOTAL NUMBER OF WORDS HA S BEEN REDUCED FOR)
(princ | THIS OPTION FROM 200 TO
(print wordoount))) ; wordcount now = total
; number of words printed

(terpr)

(princ °}

{detun interfvocdec (remstg) ; mod 2.2.3 - called by epfe - read print

H statements in this module for an
; explanation of its function
(cond ; remstg = nxgdst first time in
g(null remstg) t)
t

(terpr)(princ " Please type in the voice decoder’s response ))
(princ '}o the following next-guess-request.)
(terpr) (princ ' Remember to use the following format:)
(terpr)(princ * [ stringnum (dict.namel (tim1 tim2) prob))
(princ '[dict. name2 (tim1 tim2) prob)...))
(printwordopts (car remstg))

;car remstg is first next-guess-request (for
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;a single strirg) in remstg
.. (terpr)(princ '\ ext-gizess-request = )(print (car remstg))
- (terpr)(princ ' )
st . {setq wordgslst (oons (cons {caar rermstg){(odr (read "words)))
wordgslst))
o ;caar rermstg is string number
o {interfvocdec (<<r rerstg) ]
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(defun findfpunct {remstg) ; mod 2.2.4.1.1 - called by procwdgs - returns
: word value for fpunct.

oa (oond ; remstg = words in wdgs
— ({nul: remstg) nil)
N ((equal (caar rer-stg) 'fpunct){car remstg))

: \:\ ;caar rerstg = word.dict
:.'.-\ ;searches every word.dict in remstg until it finds
s ;an ’fpundct’ or it returns nil
e w Y (t (findfpunct (cdr remstg]
}:.‘ (defun augsenstg (stgnum fpunval remstg) ; mod 2.2.4.1.2 - called by procwdgs
’. : - adds fpunct word
"}"- , ; value to end of approp-
¥ ; ; riate string in
a N sentstringlist
" (cond ; fpunval is of the form *(fpunct (tim1 tim2) prob)’
/ :_" ; remnstg is sentstlst first time in
-\ *
o ((nu. remstg) t)
: ((equal (cear remstg) stgnum)
;oear remstg = stgnum of first sentence in remstg
hl (seta nevstg (append (car remstg)(list fpunval)))
e (setq oplseslst (cons newstg optsesist))
N (setq optsesist (append optsesist (cdr remstg))))
;«... (t (setq optsedist (cons (cer remstg) optseslst))
= (augsenstg stgnum fpunval (odr remstg]
S :
_'.f‘ (defun calcewprob (timsnprob) ; mod 2.2.4.1.3.1 - called by changeprob - does
< v]: ; new prob calculation.
998 (prog (tim1 im2 prob ans)
- ;returt:s prob + (1-prob)[1/2(tim2 - tim1) /maxwordtime]
(setq tim1 (caar timsnprob))
(selq tim? (cadar timsnprob))
::-.i (setq prob (cadr timsnprob))
ey {setq ans (diff 1.0 prob))
O (setq ans (times ans (diff im2 tim1)))
- o (setq ans (quotient ans 2.0 maxwordtim))
. (retum (add prob ans]
‘ :::j '~ X "
-
:_-;'; (defun changeprob (words) ; mod 2.2.4.1.3 - called by procwdgs - changes prob
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; of word according to its wordlngth

(cond
({null words)optseslst) ; when all done, retums sentstlst
; with changed word probs
(t (setq newprab (list {calcnewprob (cdar werds))))
;odar werds = times and
i prob for first word
(setq newword (append (cons (caar words){list (cadar words)))
;c8ar words = word.dict for
; first word
cadar words = '{tim1 tim2)’
; for first word
newprob))
(setq optseslst (cons newword cptseslst))
(changeprob (cdr words]

{defun getproblst (words) ; mod 2.2.4.1.4 - called by procwdgs - makes a list

; of all the probs in wordguess
(cond
((null words) *())
(t (cons {ceddar words)(getproblst {cdr words]
;caddar words is new prob for word

(defun newalist {num alist) mod 22.4.1.5.1 - celled by orderist - deletes

first occurrence of num in

alist, then returps alist.

NOTE - TE‘{IS ISA LATE DESIGNED
MODULE AND DOESNOT APPEAR IN
IN THE THESIS CHARTSOR
NARRATIVE.

(cond
{(null alist)(terpr)(princ 'Error in newlist: No match found.) *())
((equal (car alist) num)(cdr alist))
(t (cons (car alist)(newalist nurn (cdr alist]

(defun orderdist (alist number) ; mod 2.2.4.1.5 - celled by procwdgs and by

choptomns (2.2.6.1) and by
ranksents (2.3) - orders
the top number of elements

in alist in decreasing order

. @t Wi ws

(prog (nextnum)
(setq number (- number 1))
{ocond
({or (minusp number) (null alist)) (return '()))
(t (setq nextnum (max alist))
(setq alist (newalist nextnum alist))
(retum (cons nextnum (orderlist alist number]

.~ .

(defun topfunct (prob words) ; mod 2.2.4.1.6.1.1 - celled by gettopwds - pulls

; out words with probs matching
; prob.
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(cond

((null words) "())
{t (cond
{(equal prub (ceddar words))
;caddar werds = new prob fer first word
{cons (car words)(tcpfunct prob (dr words))))
{t (topfunct prot: {cdr words)]

(defun gettopwds (problist n words) ; mod 2.2.4.1.6.1 - called by findtopwds -
; makes list of words in
; wordguess which match
; the probs in problist
(prog ()
(setgqn(-n1)
(cond ; only do this for the top n probs in problist
((minusp r)(returr: °()))
(t (retumn (apperd (topfur.ct (car problist) words)
(gettopwds (cdr problist) n words]

(defun striptopn (alist n) ; mod 2.2.4.1.6.2 - called by findtopwds - keeps
: only the top n words of alist.
(prog ()
(setqn(-n 1))
{cond ; this used to be necessary when gettopwds functioned
; differently -- ncw its redundant
((or (null alist)({minusp n))(retum '()))
{t (return (cons (car alist) (striptopn (cdr alist) n]

b

(defun findtopwds (problist n werds) ; mod 2.2.4.1.6 - celled by procwdgs -
; main driver for submods
; which find top prob

; words (n of them).
(prog ()

(retum (striptopn {gettopwds probiist n words) n]

(defun procwdgs (wdgs) mod 2.2.4.1 - called by dectopwds - picks top words
and makes topwordlst
(prog (n fpunval)
(setg fpunval (findfpunct (cdr wdgs)))
;odr wdgs = words
(cond (fpunval (augsenstg (car wdgs) fpunval sentstlst)
(setq sentstlst optsesist)))
;car wdgs = string number
(setq wdgs (cons (car wdgs)(shorttermmem (odr wdgs))))
; send all the words to the short termm memory to
; increase probs of words recently spoken
(setq optseslst ‘()
(setq wdgs (cons (car wdgs)( changeprob (cdr wdgs))))
; send all words to changeprob to inarease word probs
; of longer words
(setq optsesist ()
(setq problist *())
(cond ((null (cdr stringlist) } (setq n numstrings))
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; if this is the first time through for this sentence,
; allow for a greater margin ¢f error for first words
(t (setq n topchoicerur)))
(setq topprist (orderdist (getprobist (odr wdgs)) r))
(setq topwordist (cors (cors (car wdgs) (fr.dicpwds topprist n
(cdr wdgs))) topwordist]

(defun dectopwds (rerstg) mod 2.2.4 - called by epfe - iteratively strips
wordguesses cff of wordgsist (which
; is remstg in this med) and sends them

; to procwdgs.

{cond
o8 ((null remstg) (terpr)(terpr){prirc 'Pr exiting dectopwords: topwordlst = ) (print topwordls
((or {(nu'l (cdar remstg)) {equal {cdar rerstg) '(nil)))(dectopwds (odr remstg)))
;odar remstg = words cf the first wdgs in remstg

(t (procwdgs (car remstg))(dectcpwds (odr remstg]

(defun getwords (stgnum remstg) ; mod 22.5.1.1.1 - called by findwdsmatch -
; returns the list of words
; in topwordlst which have
: same string number as
: string being processed in

(cond ; remstg = top word list first time in
{(null remstg)(princ 'Error: nc match in getwords.))
((equal (caar remnstg) stgnum)(cdar rernstg))
cear remstg = string number, odar = words
(t (getwonis stgnum (cdr remstg]

(defun mekests (string words) ; mod 2.2.5.1.1.2 - called by findwdsmatch -
; throws away fpuncts. Also
; mekes new strings with new
: words and concats to optstglst
(cond
((null words) t)
(t {(cond
((equal (caar words) ' fpunct) (makests string (odr words)))
;eaar words = word.dict of first word in words
(t (setq maxstnum (+ 1 maxstnum})
; get the next unused string number
(setq optstgist (cons (append (cons maxstnum (odr string

))(list (car words))) optstglst))))
; make new complete string and add it to
; optstglst

(makests string (cdr words]

{defun findwdsmatch (string) ; mod 2.2.5.1.1 - called by newstrings - calls
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:' makests with a string and its
:‘. . N assodated top words
o T (prog (words)
P (setq words {getwords (car string) topwordlst))
; ;car string = string number
a (makests string words]
-~
{defun newstrings (remstg) ; mod 2.2.5.1 - called by startnsts - calls
; findwdsmatch with next string tll
stringlist is exhausted
. {cond ; remstg is stnnghst frst time in
- ({null rerrstg) optstelst)
N ( t (findwdsmatch (car remstg))
- ;car remstg is first string in remstg
i {newstrings (cdr remstg]
o (defun builddecist (rerstg) ; mod 2.2.5.2.1 - called by makedecision - builds
. ; list of third words from end of
: strings
z (cond
((null remstg) i)
o {t (setq decword (ceaddr (reverse (car remstg))))
~- ;caaddr is third word dict from end of string
2 (cond
Ay ((member decword dedist) t)
. G (t (setq dedlist (cons decword dedist))))
o (builddedst (cdr remstg)] !
¥ ‘ "
A (defun makededision () ; mod 2.2.5.2 - celled by startnsts - displays list of
- ; oll third words from end of strings ;
; which killowsts will make decision on
" ; next
o prog ()
A (cond ((cdddar stringlist) ; only do this if there are more than
N ; two words in each string
4 gset:ddedxst {cons (ceaddr (reverse (car stringlist))) '()))
o
- {(not(equal dedist '(nil)))(builddedst (cdr stringlist))
- ;dedlist is a list of all third word.dids from .
. ;the end of every active string .
o (terpr) :
0 (terpr)(princ 'A dedsion is now being made on the )
F (princ 'third word from the end of all strings.)
R (terpr)(prir.c ‘[T he choices are:)(terpr)
- (print dedist)(terpr)]
;-:: {defun startnsts () ; mod 2.2.5 - celled by epfe - initializes global strings
" ; used and calls newstrings
(prog ()
E (setq optstgist ()
(setq stringlist {newstrings stringlist))
. (setq topwordist '())
: (setq wordgaist"())
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(terpr)(princ ' fter exitirg startnsts: stringlist = |)
(print stringlist)
(makedecision}]

* *%

(defun celcstgprob {words) ; mod 2.2.6.1.1.1.1 - called by stgprob - retums
; cummulative of word probs in
; string (just words here - no

; stringnum)

({null words) Q)
(t (add (ceddar words) {calcstgprob (cdr words)
;caddar words = prob of first word in words

(cond

{(defun stgprob (words) ; mod 2.2.6.1.1.1 - called by getstgprobs -gets stgprob
; and concats it problist and then
: returns stgprob.
(prog (prob)
(setq prob (celcstgprob words)) ; get the string prob
(setq problist (cons prob problist)) ; add it to problist
(return prob}

(defun getstgprobs (remstg) ; mod 2.2.6.1.1 - called by choptomrs and by
; ranksents (2.3) - makes new
; list of strings with stringprob

; concatted on frort of each strg
(cond ; remstg = stringlist first time in
((null remstg) '()) ; remstg = stringlist first ime in
(t (cons (cons (stgprob {cdar remstg)) (car remstg))
;odar remstg = words of first string
; the above adds stgprob to front of each string
(getstgprobs (cdr remstg]

(defun gettopsts (prob remstg) ; mod 2.2.6.1.2 - called by choptorrms - returns
; the list of strings which
H have stringprobs above or
; equal to last prob in
; problist

(cond ; remstg = stringlist first time in
((null remstg) '())
((minusp (diff (ceer remstg) prob))(gettopsts prob (codr remstg)))
;caar remstg = string prob for first string in

(t (cons (cdar remmstg) (gettopsts prob (cdr remstg)

(defun choptormns (remstg) ; mod 2.2.6.1 - called by killowsts and by ranksents
; (mod 2.3) - returns the

; the top maxstgnum strings in

W . e "
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.::- ; stringlist
2 . (prog () : rerstg = strirglist
T (setq remstg (getstgprobs rersty))
b (setq problist (orderlist problist rurmstrings))
{ (return (gettopsts (car (reverse problist)) rermsig)
ot ;car = lowest acceptable strirg prob
. ;:,
N : *
"y
3 ::: {defun ocvermir: (words n) ; mod 2.2.6.2.1.1 - called by checkmirpr - returrs
o~ ; cummulative additicr: cf last 3 ‘
; word probs. ‘
e (cond
o ((zerop n) 0) ; quit when . (= 3) words have been processed
o ((null words)(add 1.0 (cvermir. words (diff n 1))))
- (t (add (ceddar words){overmin {cdr words)(- . 1) ‘
.- ;caddar words = word prob for first werd in words ‘f
oy '
A ‘
. (defun checkminpr (words) ; mod 2.2.6.2.1 - called by elimminacc - returns :
XN ; at if last three probs (added) i
AT are greater than minacoept.
o (cond ((greaterp (ova'rmn words 3) minaccept) t] ; send back 't’ only
: ; if last three word probs are above minaccept
" ; :
“ !
" (defun elimminace (remstg) ; mod 2.2.6.2 - called by killowsts - retumns all
. ; strings with last 3 probs above
{ @ : minaccept threshold.
~ (oond ,
% ((null rermst) *()) |
0 (t gselt;qhsmng (checkminp~ (reverse (cder remstg))))
.‘-: [e's)
W ({null string) (elimminace (cdr remstg))) ; string not
; induded in new stringlist if it did
- ; not pess test in checkminpr
- ¢ (t (cans (car remstg)(elimminace {odr remstg]
B
o :
h\j
"4 (defun killowsts () ; mod 2.2.6 - called by epfe - driver for functions
' chop stringlist entries to numstrings and
.~ ; eliminates strings below minaccept threshold
-y (prog ()
o (setq problist () _
L (setq stringlist (choptomns stringlist)) 1
. (setq stringlist (elimminacc stringlist))
= (terpr) (princ '] fter exiting killowsts: stringlist = )
(print stringlist)
(terpr) (terpr)(princ '[To summarize the above stringlist, )
. {princ '}he following strings are still active:) )
. (terpr){printstglst stringlist) :
» (cond (sentstist ( terpr)(terpr)(princ "A nd the following ) )
»p (princ ' kentences are to be forwarded to the)
. (princ '| semantic analyzer:)
. (printstglst sentstist)] :
v : vos !
' |
-y ; [
..' — !
' )
!
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(defun stgprint (string) ; mod 2.2.7.1.1 - called by interfep - builds
; compacted strings with pause and
xmts them to english parser
(cond ; string = uonis frst ime in
"((null strir:3)(prirc *pause]).
D(drair)(princ ‘pause]).
| epoutport)(drain epoutport))
(t (print (caar strirg))(print (coar string) epoutport)
1 ;oear string = first word.dict in string
(princ |}
- (princ ’}] epoutpert) (stgprint (cdr string]

’

(defun evals (instrs} ; mod 2.2.7.1.2.1 - called by interfsem - evaluates
\ instrs

- (cond

e ((null instrs) t)

(t (eval (cer instrs) ) {evals (cdr instrs]

(defun errorrecovry () ; mod 2.2.7.1.2 - called by interfep - receives
: instructions for recovery and calls
; evals to have them executed
(prog (instrs)
G, (terpr)(princ "Plesse type in instructions to be evaluated )
(terpr)(print '(remember to nest list them))( terpr)
(princ 'P D(setq instrs (read 'instrs))
oY (evals instrs)]

’

{defun interfep (string) ; mod 2.2.7.1 - called by iteprest - sends compacted
; string with pause to english parser
; and builds a list of ep responses
(prog (next2 epres char)

(terpr)(terpr)
(terpr)(princ 'D ata from epfe to english parser follows:)
(terpr)(princ "o 1([) (princ "go1([] epoutport)
(stgprint (cdr string))

;odr string = words in string (no string number)
loop2

- (setg next? (readc))
- (print next2)(drain)
A (cond ((not (equal next2 '))(go loop2)))
; read next2 only after '] has been read
(setq next? (read))(print next2)(terpr)(terpr)
;next? is a list of a list of possible features for the
;next word i this string -~ it is sent by the Parser
(setq epres (cons (car string) next2))
(setq epresist (cons epres epresist)))

.

R (defun iteprest (remstg) ; mod 227 - called by eple - iteratively strips
stnngs from stringlist and cells interfep
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((null (cer remstg))
;car remstg = first string in remstg
(setq piport "stdin)(drain epoutport) ; reset primary
; input port to the user's terminal
(terpr)(print '(epreslst is as follows:))
(terpr) (print epreslst)
(terpr)(terpr)
(princ 'W ould you like to try the EP interface again?)
(terpr)
(princ | (r - rerun; i - new instrs; g - keep going))
(terpr)(princ b )
(setq char (read))
(cond
((equal char’g) t)
((equal char'r)
(setq epresist *())
(setq piport (irfile ’ /dev Aty12))
(drain epoutport) (iteprest stringlist))
((equal char 'i)(terpr)(terpr)(terpr)
(terpr) (princ "You are entering very dangerous territory! For assistancesh
(errorrecovry)
(iteprest *()))
(t (terpr)(print char)(princ '|is not a legal response. The question was))
(iteprest °()))))

(t (interfep (car remstg))(iteprest (cdr remstg]

(defun epfe (i s m tim) ; mod 2.2 - celled by semanalyzer - functions as the

(prog ()

-‘.-f‘- ‘.\_'q‘_ ‘ﬁ‘:"“"~“"~‘ ‘-:. .

interface between the english parser and the
; voice decoder: D eterministicelly builds
; syntacticelly correct strings from the voice
. decoder’s output and returns completed
;  sentences to semanalyzer for semantic analysis.

(global i sm tim) ; mod 2.2.1
loop
(formmxgs) ; mod 22.2
(terpr)(prine 'Putput from epfe to voice decoder follows:)
(interfvoodec nxgsist) ; mod 2.2.3
(terpr)(princ ‘[T his condudes output (next-guess-requests) )
(princ 'from the epfe to the voice decoder.)(terpr)(terpr)
(terpr) (princ 'Before entering dectopwds: wordgsist = )
(print wordgsist)
(dectopwds wordgsist) ; mod 2.2.4
(cond ((mull (cer topwordlst))(return)))
(setq nxgaist *())
(startnsts) ; mod 2.25
(oond ((null stringlist)
(terpr)(princ 'Epfe done. Returning to semantic |)
(princ "hnalyzer. (retum)))
(killowsts) ; mod 2.2.6
(cond ((rull stringlist)
(terpr) (princ 'Epfe done. Retuming to semantic )
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;:;I;:; (princ "hnalyzer. ) (retum)))
o L. (setq init nil) ; if its made it this far, it is rc lenger processing
o ; the first word in the siring.
i (setq epresist *())
i (setq piport (infile ’ /dev Aty12))(drain epoutport) ; set primary
504 ; input port to the DEC-10 modem
_:-:-: (iteprest stringlist) ; mod 2.2.7
b (go loop)]
26 .
<
. :
l~,:_
5 (defun semaninit () ; mod 2.1 - called by semanalyzer - initializes semantic

) ; analyzer global veriables.

A (prog ()

N (setq shortermem *())

vt (terpr)(terpr)(terpr)

= {princ "Fontrol has now been tumed over to the semantic )
e (princ *pnalyzer.)( terpr)

v (princ '[his is the highest level of dedsion making in the )
" (princ 'peech recognition process ) (terpr)

a3 {(princ '[n order to initialize the system error parameters, )

. ~~ (princ 'pleese answer the following questions.))(terpr) (terpr)
L QU (princ 'How many words deep will the A coustic A nalyzer have )
= (princ "}o go in order to )(terpr)
sl (princ ‘'guarantee that the correct word will be recogmzed? ]

o (prine " Normally this is "3") )(terpr) (princ '} )
{setq searchdepth {reed 'searchdepth) ){terpr)
- {princ "W hat is the minimun acceptable average probabilty of )
) (princ "korrectness for the last ) (terpr)
A3 (princ 'three words in a string? (N ormally this is .75).)
,-;.:f (terpr) (princ 'P> D(setq acceptthresh (read * acceptthresh))
o (terpr)(terpr) (terpr)(terpr)
::,-: (setq sentstart ' 1000)
N (setq iittim 0)]
R ’
‘g. : »
R (defun modfpuncts (sentstg) : mod 2.3.1.1 - called by incrfpundts - if last

o ; word int the sentence is an
-,:_:.j : fpunct, this mod adds 100 to its
::__ - word prob.

{prog (newprob newword)
sl (eetq sentstg (reverse sentstg))
= -~ (cond
NI Y ((equal (caar sentstg) "fpunct)
e ;omar sentsts = word.dict of last word in string
.:,.; (setq newprob (add 100 (caddar sentstg)))
N .,:. ;caddar sentstg = prob of fpunct
\ L]
gY %
.rf'j -
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Iy R (setq newword (reverse (car sentstg))) 1
.i‘ KO {setg newword (reverse (cons newprob (cdr newword)))) ‘
) <t (retum (reverse (cons newword (cdr sentstg))))) ]
i (t (return (reverse sentstg]
: |
{
(defun inafpunds (remstg) ; mod 2.3.1 - called by ranksents - counts
; number of sentences in sentstist
- ; and calls modfpundts for each
;-“ sentence.
) (cond ; remstg= sentstlst first time in
s ((null 